.npy文件是numpy专用的二进制文件
np.save(path,object):生成npy文件
np.load(path): 读取npy文件
直接将numpy中array数据结构报存到npy文件中;
也可以直接将npy文件中的内容读出来存在array中。
# python读取和保存.npy文件
import numpy as np
arr=np.array([[1,2],[3,4]]) # 生成一个numpy数组
# 将np数组保存到npy文件中
np.save("E:\\train_data\\arr.npy",arr)
print("save np.array into npy file is done!")
# 读取npy文件
arr1=np.load("E:\\train_data\\arr.npy")
print(arr1)
'''
result:
save np.array into npy file is done!
[[1 2]
[3 4]]
'''
将JPG图片缩放,并将缩放的image保存为.npy文件
将512384的image,缩放为5050.
import tensorflow as tf
import numpy as np
import os
import glob
import matplotlib.pyplot as plt
'''缩放训练集的图片'''
def resize_the_image(sourcePath,desPath):
dataPath=sourcePath+'\\*.jpg'
num1=len([images for images in os.listdir(sourcePath)])
i=0
resized_images=np.zeros((num1,50,50,3)) # 将原始图片缩放为50*50,然后在存放在npy文件中
with tf.Session() as sess:
for imageFile in glob.glob(dataPath):
raw_data = tf.gfile.FastGFile(imageFile, 'rb').read()
img_data = tf.image.decode_jpeg(raw_data) # 解码
resized = tf.image.resize_images(img_data, [50, 50], method=0).eval()
resized_images[i] = resized
i+=1
# 将存放缩放后的图片保存到目标npy 文件中
np.save(desPath, resized_images)
if __name__ == '__main__':
'''缩放训练集'''
resize_the_image('E:\\train_data\\trash_dataset\\data\\train_images',"E:\\train_data\\trash_dataset\\data\\resized_trian_images.npy")
'''缩放验证集'''
resize_the_image('E:\\train_data\\trash_dataset\\data\\validate_images',"E:\\train_data\\trash_dataset\\data\\resized_validate_images.npy")
'''缩放测试集'''
resize_the_image('E:\\train_data\\trash_dataset\\data\\test_images',"E:\\train_data\\trash_dataset\\data\\resized_test_images.npy")
'''测试一下缩放之后的train_image能不能正常播放【成功】'''
resized=np.load("E:\\train_data\\trash_dataset\\data\\resized_trian_images.npy")
print(resized.shape) # (1194, 50, 50, 3)
resized_image = resized[1] / 255 # 数据归一化,然后显示
plt.imshow(resized_image)
plt.show()
运行结果:生成3个分别用来存放训练集,验证集和测试集的.npy文件。
显示缩放后的一张image,如下