图像预处理之—图片缩放,然后将缩放后的JPG图片保存到.npy文件中

.npy文件是numpy专用的二进制文件
np.save(path,object):生成npy文件
np.load(path): 读取npy文件
直接将numpy中array数据结构报存到npy文件中;
也可以直接将npy文件中的内容读出来存在array中。

# python读取和保存.npy文件
import numpy as np
arr=np.array([[1,2],[3,4]]) # 生成一个numpy数组
# 将np数组保存到npy文件中
np.save("E:\\train_data\\arr.npy",arr)
print("save np.array into npy file is done!")
# 读取npy文件
arr1=np.load("E:\\train_data\\arr.npy")
print(arr1)
'''
result:
save np.array into npy file is done!
[[1 2]
 [3 4]]
'''

将JPG图片缩放,并将缩放的image保存为.npy文件
将512384的image,缩放为5050.

import tensorflow as tf
import numpy as np
import os
import glob
import matplotlib.pyplot as plt

'''缩放训练集的图片'''
def resize_the_image(sourcePath,desPath):
    dataPath=sourcePath+'\\*.jpg'
    num1=len([images for images in os.listdir(sourcePath)])
    i=0
    resized_images=np.zeros((num1,50,50,3))    # 将原始图片缩放为50*50,然后在存放在npy文件中
    with tf.Session() as sess:
        for imageFile in glob.glob(dataPath):
            raw_data = tf.gfile.FastGFile(imageFile, 'rb').read()
            img_data = tf.image.decode_jpeg(raw_data)  # 解码
            resized = tf.image.resize_images(img_data, [50, 50], method=0).eval()
            resized_images[i] = resized
            i+=1
    # 将存放缩放后的图片保存到目标npy 文件中
    np.save(desPath, resized_images)

if __name__ == '__main__':
    '''缩放训练集'''
    resize_the_image('E:\\train_data\\trash_dataset\\data\\train_images',"E:\\train_data\\trash_dataset\\data\\resized_trian_images.npy")
    '''缩放验证集'''
    resize_the_image('E:\\train_data\\trash_dataset\\data\\validate_images',"E:\\train_data\\trash_dataset\\data\\resized_validate_images.npy")
    '''缩放测试集'''
    resize_the_image('E:\\train_data\\trash_dataset\\data\\test_images',"E:\\train_data\\trash_dataset\\data\\resized_test_images.npy")

    '''测试一下缩放之后的train_image能不能正常播放【成功】'''
    resized=np.load("E:\\train_data\\trash_dataset\\data\\resized_trian_images.npy")
    print(resized.shape)   # (1194, 50, 50, 3)
    resized_image = resized[1] / 255  # 数据归一化,然后显示
    plt.imshow(resized_image)
    plt.show()

运行结果:生成3个分别用来存放训练集,验证集和测试集的.npy文件。
在这里插入图片描述
显示缩放后的一张image,如下
在这里插入图片描述

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值