基于 esp32-s3,结合私有化大模型,集asr语音识别、llm大模型、tts语音合成,设计一个技术方案,要求用websocket保持长链接,

以下方案演示了如何基于 ESP32-S3,通过私有化大模型组合 ASR(语音识别)、LLM(语言大模型)和 TTS(语音合成)来构建一个语音交互系统,并且通过 WebSocket 保持与服务器的长连接通讯。整体方案分为以下几个部分:

  1. 系统整体架构与数据流
  2. 协议设计与消息格式
  3. 服务器端实现示例
  4. ESP32-S3 端实现示例
  5. 运行流程与示例

下面将对各部分进行详细说明。

ESP32-S3没想到私有化大模型速度也能这么快


在这里插入图片描述

ESP32-S3 psram 2M,flash 4M 实时唤醒,打断

1. 系统整体架构与数据流

1.1 硬件概览

  • ESP32-S3 开发板

    • 集成麦克风(或者外接 I2S 麦克风)用于录音输入
    • 集成喇叭(或者外接 I2S 喇叭/耳机)用于播放合成语音
    • Wi-Fi 模组用于与服务器进行网络通信
  • 服务器(云端或本地私有部署均可)

    • 包含以下核心功能模块:
      1. ASR 模块:接收音频数据,实时或分段进行语音识别,返回文本结果
      2. LLM 模块:根据识别出的文本,通过私有化大模型进行上下文理解与回答生成
      3. TTS 模块:将大模型的回答转换为语音数据
    • 提供 WebSocket 服务端接口,与 ESP32-S3 进行长连接通讯

1.2 整体数据流示意

  1. ESP32-S3 采集到用户语音,通过 WebSocket 将音频数据流发送给 服务器
  2. 服务器 ASR 模块 对音频进行实时识别,识别结果以文本的形式返回给 ESP32-S3。
  3. 当用户语音输入结束后(或达到一定停顿判定),服务器的 LLM 模块 进行语义理解和回答生成,返回文本回答。
  4. 服务器使用 TTS 模块 将回答文本转成语音流,通过 WebSocket 发送给 ESP32-S3。
  5. ESP32-S3 接收音频流并播放给用户。

2. 协议设计与消息格式

2.1 WebSocket 连接与握手

  • ESP32-S3 侧作为客户端,连接到服务器的 WebSocket 端口。例如:
    ws://<server_ip_or_domain>:<port>/speech
    
  • 握手成功后,服务器端和 ESP32-S3 端保持长连接,可以实时双向发送消息。

2.2 消息类型与数据格式

可将每个 WebSocket 消息用一个 JSON 包装,方便在前后端解析。示例结构如下:

{
  "msg_type": "<消息类型>",
  "seq_id": "<序列号>",
  "payload": {
    // 具体内容
  }
}

常见的消息类型包括:

  • audio_chunk:ESP32-S3 发送的音频分片
    • payload 包含音频的原始字节或者 Base64 编码
  • asr_result:服务器返回的阶段性或最终识别文本
    • payload 包含识别文本、置信度等
  • asr_end:语音识别结束的指令
    • 表示服务器不再等待更多的音频输入
  • llm_request:当服务器端需要进行 LLM 推理时,从 ASR 模块转发/触发给 LLM 模块
  • llm_response:服务器返回的 LLM 生成文本
    • payload 包含大模型生成的文本
  • tts_chunk:服务器返回的语音合成音频分片
    • payload 包含合成后的音频数据(比如 PCM 或某种压缩格式)
  • tts_end:语音合成结束的指令

2.3 数据传输细节

  1. 音频格式

    • 采样率:16kHz / 16bit / 单声道 或其他与 ASR 模型兼容的配置
    • 传输方式:PCM 原始数据或使用 Opus 编码后传输(减少带宽)
  2. 文本格式

    • 统一使用 UTF-8 编码
    • JSON 传输时需做相应的转义
  3. 消息序列号(seq_id

    • 用于追踪同一对话、同一次请求的所有消息关系
    • 例如:一个完整的语音请求从语音片段开始到语音合成结束,都可以使用相同的 seq_id

3. 服务器端实现示例

这里以 Python 为例,使用了常见的 websockets 库搭建 WebSocket 服务,并且示例性地说明如何组合 ASR、LLM 和 TTS 模块。
此示例代码框架仅用于演示,实际可根据需要嵌入第三方或者私有化大模型相关的推理调用。

3.1 Python WebSocket 服务器示例

import asyncio
import websockets
import base64
import uuid
import json

# 伪代码,指示如何调用ASR/LLM/TTS,实际可用第三方或自研模块替换
from asr_module import asr_process
from llm_module import llm_infer
from tts_module import tts_synthesis

PORT = 8000

# 维护一个对话状态类,例如存储临时音频数据和识别结果
class SessionState:
    def __init__(self):
        self.audio_chunks = []
        self.asr_text = ""

async def handle_connection(websocket, path):
    print(f"[Server] New connection from {websocket.remote_address}")
    session_state = SessionState()
    seq_id = None

    try:
        async for message in websocket:
            # 解析 JSON 消息
            data = json.loads(message)
            msg_type = data.get("msg_type")
            seq_id = data.get("seq_id")
            payload = data.get("payload", {})

            if msg_type == "audio_chunk":
                # 收到音频分片(PCM 或 Base64 之后的音频)
                audio_data_b64 = payload.get("audio_data")
                if audio_data_b64:
                    audio_data = base64.b64decode(audio_data_b64)
                    session_state.audio_chunks.append(audio_data)

                # 这里也可以进行实时流式 ASR
                asr_partial_result = asr_process(audio_data)
                # 将分段识别结果返回 ESP32-S3
                resp = {
                    "msg_type": "asr_result",
                    "seq_id": seq_id,
                    "payload": {
                        "text": asr_partial_result,
                        "final": False
                    }
                }
                await websocket.send(json.dumps(resp))

            elif msg_type == "asr_end":
                # 用户不再发送音频,进行完整 ASR 处理
                final_text = asr_process(b"".join(session_state.audio_chunks), finalize=True)
                session_state.asr_text = final_text

                # 返回完整识别结果
                resp = {
                    "msg_type": "asr_result",
                    "seq_id": seq_id,
                    "payload": {
                        "text": final_text,
                        "final": True
                    }
                }
                await websocket.send(json.dumps(resp))

                # 调用 LLM 进行文本生成
                llm_answer = llm_infer(final_text)
                resp_llm = {
                    "msg_type": "llm_response",
                    "seq_id": seq_id,
                    "payload": {
                        "text": llm_answer
                    }
                }
                await websocket.send(json.dumps(resp_llm))

                # 调用 TTS 进行合成
                for tts_chunk in tts_synthesis(llm_answer):
                    # tts_chunk 为一次 PCM 或其他音频格式的分片
                    tts_b64 = base64.b64encode(tts_chunk).decode('utf-8')
                    resp_tts = {
                        "msg_type": "tts_chunk",
                        "seq_id": seq_id,
                        "payload": {
                            "audio_data": tts_b64
                        }
                    }
                    await websocket.send(json.dumps(resp_tts))

                # 合成结束通知
                resp_tts_end = {
                    "msg_type": "tts_end",
                    "seq_id": seq_id,
                    "payload": {}
                }
                await websocket.send(json.dumps(resp_tts_end))

            else:
                # 其他消息类型的处理
                pass

    except websockets.ConnectionClosed as e:
        print(f"[Server] Connection closed: {e}")
    finally:
        print(f"[Server] Client {websocket.remote_address} disconnected.")

async def main():
    async with websockets.serve(handle_connection, "0.0.0.0", PORT):
        print(f"[Server] WebSocket server started on port {PORT}")
        await asyncio.Future()  # run forever

if __name__ == "__main__":
    asyncio.run(main())
说明
  • asr_process:演示用函数,实际可调用私有化部署的语音识别引擎(如 Kaldi/WeNet/Whisper 等)。
  • llm_infer:演示用函数,实际可调用私有化部署的大模型推理接口(如 fine-tuned GPT、LLaMA、ChatGLM 等)。
  • tts_synthesis:演示用函数,实际可调用私有化部署的 TTS 引擎(如 Tacotron、VITS、Fastspeech、讯飞离线 SDK 等)。
  • 这里将音频分段(audio_chunk)和识别结束(asr_end)分开处理,可以根据需要调整为流式 ASR 或一次性发送音频。
  • 服务器将识别结果、LLM 输出和 TTS 输出通过同一个 WebSocket 连接发送回 ESP32-S3。

4. ESP32-S3 端实现示例

以下以 ESP-IDF + C/C++ 为例子,示范如何使用 WebSocket 客户端进行长连接,并与服务器进行音频和文本的收发。

4.1 主要组件

  1. I2S 驱动:录制麦克风音频并回放合成音频
  2. WebSocket 客户端:与服务器建立长连接,发送 JSON 消息和音频数据
  3. 事件回调:处理服务器返回的识别结果、TTS 音频并播放

4.2 代码示例

CMakeLists.txt(简化示例)

cmake_minimum_required(VERSION 3.5)

set(EXTRA_COMPONENT_DIRS 
    $ENV{IDF_PATH}/examples/common_components/protocol_examples_common
    # 如果有 websocket 客户端组件,需要包含进来
    )

include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(esp32_s3_asr_llm_tts)

main.cpp(或 main.c)

#include <stdio.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "protocol_examples_common.h"

// 如果使用了 ESP-IDF 的 websocket 或者第三方库
#include "esp_websocket_client.h"
#include "cJSON.h"
#include "driver/i2s.h"
#include "base64.h"

static const char *TAG = "ASR_LLM_TTS";

// WebSocket 相关
static esp_websocket_client_handle_t client = NULL;
static bool connected = false;

// 音频相关设置
#define SAMPLE_RATE     16000
#define I2S_CHANNEL_NUM (1)
#define I2S_DMA_BUF_LEN (1024)

static void i2s_init()
{
    // 初始化 I2S,用于麦克风录音和播放
    // 注意 ESP32-S3 I2S 引脚、模式配置
    i2s_config_t i2s_config = {
        .mode = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_TX | I2S_MODE_RX),
        .sample_rate = SAMPLE_RATE,
        .bits_per_sample = I2S_BITS_PER_SAMPLE_16BIT,
        .channel_format = I2S_CHANNEL_FMT_ONLY_LEFT, // 单声道
        .communication_format = I2S_COMM_FORMAT_STAND_I2S,
        .intr_alloc_flags = 0,
        .dma_buf_count = 4,
        .dma_buf_len = I2S_DMA_BUF_LEN,
        .use_apll = false,
        .tx_desc_auto_clear = true,
    };
    // 配置 i2s pin
    i2s_pin_config_t pin_config = {
        // 根据开发板原理图填写
        .bck_io_num = CONFIG_I2S_BCK_PIN,
        .ws_io_num = CONFIG_I2S_WS_PIN,
        .data_out_num = CONFIG_I2S_DO_PIN,
        .data_in_num = CONFIG_I2S_DI_PIN
    };
    i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL);
    i2s_set_pin(I2S_NUM_0, &pin_config);
}

// WebSocket 事件回调
static void websocket_event_handler(void *handler_args, esp_event_base_t base,
                                    int32_t event_id, void *event_data)
{
    esp_websocket_event_data_t *data = (esp_websocket_event_data_t *)event_data;

    switch (event_id) {
    case WEBSOCKET_EVENT_CONNECTED:
        ESP_LOGI(TAG, "WebSocket connected");
        connected = true;
        break;
    case WEBSOCKET_EVENT_DISCONNECTED:
        ESP_LOGI(TAG, "WebSocket disconnected");
        connected = false;
        break;
    case WEBSOCKET_EVENT_DATA:
        // 收到服务器消息
        if (data->op_code == 1) { // TEXT Frame
            // 解析 JSON
            char *msg = strndup((char*)data->data_ptr, data->data_len);
            cJSON *root = cJSON_Parse(msg);
            if (root) {
                cJSON *msg_type = cJSON_GetObjectItem(root, "msg_type");
                cJSON *seq_id = cJSON_GetObjectItem(root, "seq_id");
                cJSON *payload = cJSON_GetObjectItem(root, "payload");

                if (msg_type && payload) {
                    if (strcmp(msg_type->valuestring, "asr_result") == 0) {
                        cJSON *textItem = cJSON_GetObjectItem(payload, "text");
                        ESP_LOGI(TAG, "ASR result: %s", textItem->valuestring);
                        // 如果 final=true,说明识别结束
                    }
                    else if (strcmp(msg_type->valuestring, "llm_response") == 0) {
                        cJSON *textItem = cJSON_GetObjectItem(payload, "text");
                        ESP_LOGI(TAG, "LLM answer: %s", textItem->valuestring);
                    }
                    else if (strcmp(msg_type->valuestring, "tts_chunk") == 0) {
                        // Base64 音频数据
                        cJSON *audioData = cJSON_GetObjectItem(payload, "audio_data");
                        if (audioData) {
                            size_t out_len = 0;
                            unsigned char *decoded_data = base64_decode((const unsigned char*)audioData->valuestring, 
                                                                        strlen(audioData->valuestring),
                                                                        &out_len);
                            // 播放音频
                            size_t bytes_written = 0;
                            i2s_write(I2S_NUM_0, decoded_data, out_len, &bytes_written, portMAX_DELAY);
                            free(decoded_data);
                        }
                    }
                    else if (strcmp(msg_type->valuestring, "tts_end") == 0) {
                        ESP_LOGI(TAG, "TTS playback end.");
                    }
                }
                cJSON_Delete(root);
            }
            free(msg);
        }
        break;
    default:
        break;
    }
}

static void websocket_app_start(void)
{
    esp_websocket_client_config_t ws_cfg = {};
    ws_cfg.uri = CONFIG_WEBSOCKET_URI; // e.g.: "ws://192.168.1.100:8000/speech"

    client = esp_websocket_client_init(&ws_cfg);
    esp_websocket_register_events(client, WEBSOCKET_EVENT_ANY, websocket_event_handler, NULL);
    esp_websocket_client_start(client);
}

static void record_and_send_task(void *arg)
{
    while (1) {
        if (connected) {
            // 从 I2S 读一段音频
            uint8_t i2s_buf[I2S_DMA_BUF_LEN];
            size_t bytes_read;
            i2s_read(I2S_NUM_0, i2s_buf, I2S_DMA_BUF_LEN, &bytes_read, portMAX_DELAY);

            // 将这段音频进行 base64 编码并通过 JSON 发出去
            size_t b64_len = 0;
            unsigned char *b64_data = base64_encode(i2s_buf, bytes_read, &b64_len);

            cJSON *root = cJSON_CreateObject();
            cJSON_AddStringToObject(root, "msg_type", "audio_chunk");
            cJSON_AddStringToObject(root, "seq_id", "session_123");
            cJSON *payload = cJSON_CreateObject();
            cJSON_AddStringToObject(payload, "audio_data", (char*)b64_data);
            cJSON_AddItemToObject(root, "payload", payload);

            char *out_str = cJSON_PrintUnformatted(root);
            esp_websocket_client_send_text(client, out_str, strlen(out_str), portMAX_DELAY);

            free(out_str);
            free(b64_data);
            cJSON_Delete(root);
        } else {
            vTaskDelay(pdMS_TO_TICKS(1000));
        }
    }
}

static void stop_recording_and_send_asr_end()
{
    // 当检测到语音结束(或按键)时,发送 asr_end
    cJSON *root = cJSON_CreateObject();
    cJSON_AddStringToObject(root, "msg_type", "asr_end");
    cJSON_AddStringToObject(root, "seq_id", "session_123");
    cJSON_AddItemToObject(root, "payload", cJSON_CreateObject());

    char *out_str = cJSON_PrintUnformatted(root);
    esp_websocket_client_send_text(client, out_str, strlen(out_str), portMAX_DELAY);

    free(out_str);
    cJSON_Delete(root);
}

extern "C" void app_main(void)
{
    esp_err_t ret = nvs_flash_init();
    if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
        ESP_ERROR_CHECK(nvs_flash_erase());
        ret = nvs_flash_init();
    }
    ESP_ERROR_CHECK(ret);

    // 连接 Wi-Fi
    ESP_ERROR_CHECK(example_connect());

    // 初始化 I2S
    i2s_init();

    // 启动 WebSocket 客户端
    websocket_app_start();

    // 创建录音任务
    xTaskCreate(record_and_send_task, "record_and_send_task", 4096, NULL, 5, NULL);

    // 在实际应用中,可以进行 VAD 或按键判断结束语音,然后调用 stop_recording_and_send_asr_end()

    while (true) {
        vTaskDelay(pdMS_TO_TICKS(1000));
        // 这里只是演示可以在合适的时机结束语音
        // stop_recording_and_send_asr_end();
    }
}
说明
  1. record_and_send_task 循环从 I2S 读取音频数据,然后通过 WebSocket 发送给服务器。
  2. stop_recording_and_send_asr_end() 用于在合适时机(例如检测到语音结束、或按键事件)通知服务器进行最终识别和后续的 LLM + TTS 流程。
  3. 收到服务器端的 asr_resultllm_responsetts_chunk 等消息后分别进行处理,最后在 tts_chunk 中拿到音频数据即可播放。

5. 运行流程与示例

  1. 上电/启动

    • ESP32-S3 启动后连接 Wi-Fi
    • 建立 WebSocket 连接
  2. 开始录音

    • 用户对着麦克风说话,ESP32-S3 不断采集音频,并将音频分片发送到服务器
  3. 实时/流式 ASR

    • 服务器接收音频分片,进行阶段性 ASR(可选)
    • 服务器发送 asr_resultfinal=false)到 ESP32-S3,展示或调试语音实时识别
  4. 结束语音输入

    • 当检测到语音结束或按键触发时,ESP32-S3 发送 asr_end
    • 服务器进行整段音频的最终识别
    • 服务器发送 asr_resultfinal=true
  5. LLM 推理

    • 服务器将最终识别的文本丢给私有化大模型进行理解与生成回答
    • 服务器通过 llm_response 将回答返回给 ESP32-S3
  6. TTS 合成与播放

    • 服务器在得到 LLM 输出后进行语音合成(可分段输出),用 tts_chunk 发送给 ESP32-S3
    • ESP32-S3 收到后通过 I2S 播放
    • 当合成结束,服务器发送 tts_end
  7. 重复对话

    • 用户继续输入语音,ESP32-S3 继续发送音频,实现多轮交互
    • 可以使用相同的 seq_id 标识同一次对话,也可由服务器来管理对话状态

总结

以上方案演示了一个比较完整的端到端流程,包括:

  1. ESP32-S3 端

    • 采集音频、编码发送、播放服务器下行的 TTS 音频
    • 使用 WebSocket 保持长连接,并解析服务器返回的识别结果、LLM 文本和合成音频
  2. 服务器端

    • 搭建 WebSocket 服务
    • 接收音频、调用 ASR 模块做语音识别
    • 将识别文本通过私有化大模型进行语义理解和回答生成
    • 将回答文本通过 TTS 模块合成为音频,再分段发送给 ESP32-S3 播放
  3. 协议与数据格式

    • 通过 JSON 包装消息,含 msg_typeseq_idpayload
    • 音频数据用 Base64 编码或其他可行的方式传输
    • 通过 asr_resultllm_responsetts_chunktts_end 等进行交互控制

此架构可以根据项目需求做进一步的扩展与优化,例如:

  • ASR 使用流式识别,减少延迟
  • LLM 结合上下文管理,实现多轮对话
  • TTS 使用更高效的压缩或更高保真音频
  • 在私有服务器中部署多个大模型服务,通过负载均衡应对并发

通过以上思路,便可以在 ESP32-S3 上实现基于语音输入 -> ASR -> LLM -> TTS 输出的闭环对话系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值