
CozyLife方案开发
文章平均质量分 76
CozyLife方案开发
qq_41126242
这个作者很懒,什么都没留下…
展开
-
豆包RTC语音对话机器人使用说明书
本产品是基于豆包RTC大模型语音对话机器人。1. 在Cozylife中长按删除设备。原创 2025-01-14 13:55:48 · 781 阅读 · 0 评论 -
帮助你基于 ESP32-S3 + openai-realtime-embedded-sdk 并结合 ChatGPT Function Call 功能,实现“本地智能家居控制”系统
以下内容为一个思路性、示例性的说明,帮助你基于 ESP32-S3 + openai-realtime-embedded-sdk 并结合 ChatGPT Function Call 功能,实现“本地智能家居控制”系统。由于每个项目的实际需求和硬件环境不同,具体实现过程需要在此思路基础上做进一步适配与调试。基于ESP32-S3 豆包RTC Function Call 控制智能家居,非云端控制,直接本地2.4G ,ChatGPT 同样支持。原创 2025-01-14 10:26:46 · 1195 阅读 · 0 评论 -
本文旨在提供一个思路与示例,帮助您快速上手 SPI Flash 的读写操作。
以上就是在。原创 2025-01-10 10:09:47 · 1320 阅读 · 0 评论 -
唯独这个手机(如 iQOO / 某厂商的特定型号)开热点无法连接
重点检查加密方式、2.4GHz 频段、信道—— 这是最常见导致连接不上的原因。查看断线 reason code—— 可以迅速判断是不是密码错误、认证过期、握手失败等。如仍无解,可把 Debug 日志(尤其是 Wi-Fi scan/connection 过程、断线 reason)发给技术支持或论坛,进一步诊断。如果确认是手机端固件或设置的问题,也可尝试联系手机厂商或换其他热点方案(比如用路由器中转)来绕开兼容性瓶颈。原创 2025-01-08 17:53:59 · 1237 阅读 · 0 评论 -
测试方案”)的理解与拆解,结合常见的产测需求与PC端软件设计思路所作的设计参考。具体实现可根据实际需求在 PyQt 或 C# 中进行二次开发和完善。
主线逻辑:根据产测方案逐步实现“通信->测试流程->结果记录”的闭环。开发技术选择:PyQt 适合快速开发与界面定制;C# WinForm/WPF 结合 Visual Studio,可以更好地与 Windows 环境及硬件交互、易于维护。实施落地:在实际开发中,需要根据具体测试需求与硬件接口进行二次封装与测试验证;注重调试串口、网络通信的正确性和稳定性。上述内容仅为一个通用设计参考,具体还需要结合贵司实际测试需求、软硬件接口规范和产线操作流程进行详细落地与完善。原创 2025-01-08 15:36:49 · 869 阅读 · 0 评论 -
OpenAI Realtime Function Calling 与 ESP32-S3 结合的纯技术方案示例
自然语言 -> 函数调用在 ChatGPT 中定义可调用函数的列表,让模型在适宜场景下自动生成“函数调用请求”,包括函数名和结构化参数。例如,当用户说“将卧室灯调到 50% 亮度,并读取室内温度”,模型可能自动返回一个 JSON:{以及另一条函数调用用于读取温度传感器数据。实时函数执行与反馈后端接收到模型的函数调用请求后,与ESP32-S3通信(例如通过 MQTT/HTTP/WebSocket),执行实际的硬件控制或数据获取。原创 2025-01-08 12:27:18 · 1413 阅读 · 0 评论 -
这段代码主要功能似乎是对某种 LED 显示阵列或“屏”的逐行(或逐列)扫描
这段 C 风格代码的核心是对三通道(R/G/B)的 1920 字节图像进行逐行扫描、比较,并写出对应的 bit,以实现多级亮度展示。翻译成 JavaScript 后,我们保留了主要逻辑与数组操作,只是改用 JS 的变量、循环和数组访问方式。真正使用时,可以依照需求对接口和结构进一步封装,或改用 ES 模块、Class 等更现代的 JavaScript 方式。如果要在浏览器中模拟显示效果,可以把UpdateShow的数据变成像素渲染;原创 2025-01-07 16:38:00 · 705 阅读 · 0 评论 -
实现一个基于对话的互动角色(如“如梦”),提供模拟情感、语言风格、情景设定等功能。
通过 Prompt 提示预定义角色背景、语气和行为模式。使用对话历史上下文传递机制,使对话保持连贯性。如果需要更具体的代码或调试支持,请告知!根据用户输入调整对话风格和语气。原创 2025-01-02 11:02:16 · 1220 阅读 · 0 评论 -
ESP32-C3 TTL-WiFi 透传产品
在出厂设置中,固件默认工作在AP模式,WiFi模块主动发出来的热点名称为:“Doit_WiFi_xxxxxx”,其中“xxxxxx”是该模块的MAC地址后六位。研发的透传固件优化了网页配置界面,支持AP、STA、AP+STA配置方式,支持的串口波特率从300bps~3686400bps,支持TCP Server/Client,UDP Server/Client,UDP局域网广播等多种功能。例如,如下图所示,采用4G网络。在默认出厂情况下,固件关闭STA,工作在AP模式下,串口参数为9600,n,8,1。原创 2024-12-31 10:20:49 · 1646 阅读 · 0 评论 -
TTL-WiFi 透传产品
在出厂设置中,固件默认工作在AP模式,WiFi模块主动发出来的热点名称为:“Doit_WiFi_xxxxxx”,其中“xxxxxx”是该模块的MAC地址后六位。研发的透传固件优化了网页配置界面,支持AP、STA、AP+STA配置方式,支持的串口波特率从300bps~3686400bps,支持TCP Server/Client,UDP Server/Client,UDP局域网广播等多种功能。例如,如下图所示,采用4G网络。在默认出厂情况下,固件关闭STA,工作在AP模式下,串口参数为9600,n,8,1。原创 2024-12-31 10:08:06 · 692 阅读 · 0 评论 -
四博智联ESP32-C2透传模块通过嵌入ESP32-C2芯片,配合其自主研发的工业级透传固件,为用户提供高性能的无线通信解决方案。本模块支持串口到Wi-Fi或云端的数据透传功能
四博智联ESP32-C2透传模块通过嵌入ESP32-C2芯片,配合其自主研发的工业级透传固件,为用户提供高性能的无线通信解决方案。本模块支持串口到Wi-Fi或云端的数据透传功能,兼容性强,广泛适用于智能家居、工业控制等应用场景。原创 2024-12-31 09:57:31 · 589 阅读 · 0 评论 -
DeepSeek-V3 是由 deepseek-ai 团队开发的项目,旨在为开发者、研究者以及企业提供先进的深度学习、自然语言处理和数据分析解决方案
是由团队开发的项目,旨在为开发者、研究者以及企业提供先进的深度学习、自然语言处理和数据分析解决方案。它提供了丰富的功能组件以及高可扩展、易于集成的架构,帮助用户快速构建并部署 AI 应用,降低研究与开发门槛。高性能:算法优化及高效实现,性能指标领先同类开源项目。模块化架构:能够灵活选用或替换各个组件,快速定制化。易上手:详尽的文档和示例,初学者和专业用户都能快速上手。社区驱动:社区积极参与,共同进步与迭代。通过多渠道、多形式地宣传。原创 2024-12-31 09:44:47 · 1909 阅读 · 0 评论 -
根据节假日参数生成 10 组灯光效果,同时在颜色生成中引入时间因素(早晨、傍晚、半夜等时间段的不同感受),从而更贴合用户的情绪和节日氛围。
以下是改进的代码,根据节假日参数生成 10 组灯光效果,同时在颜色生成中引入时间因素(早晨、傍晚、半夜等时间段的不同感受),从而更贴合用户的情绪和节日氛围。原创 2024-12-30 16:22:27 · 233 阅读 · 0 评论 -
进一步增强随机性,让时间因子不仅影响颜色和强度,还与情绪因子关联起来,从而生成更动态、与时间相关的情绪灯光效果
以下是改进后的算法,进一步增强随机性,让时间因子不仅影响颜色和强度,还与情绪因子关联起来,从而生成更动态、与时间相关的情绪灯光效果。原创 2024-12-27 17:25:03 · 337 阅读 · 0 评论 -
进一步增强随机性,让时间因子不仅影响颜色和强度,还与情绪因子关联起来,从而生成更动态、与时间相关的情绪灯光效果
以下是改进后的算法,进一步增强随机性,让时间因子不仅影响颜色和强度,还与情绪因子关联起来,从而生成更动态、与时间相关的情绪灯光效果。原创 2024-12-27 17:04:59 · 300 阅读 · 0 评论 -
增强随机性,让用户感到每次使用体验不一样
以下是进一步增强随机性的改进代码,在生成灯光效果时加入更多的随机因素,包括随机选择颜色、随机模式排列,以及随机的轻微变化,使每次使用时效果更加独特,带来不同的体验。原创 2024-12-27 16:55:33 · 318 阅读 · 0 评论 -
生成 10 组包含 7 个 RGB 颜色、播放模式和强度的灯光效果,并提供一个接口让单片机随机选择其中一组播放
以下是改进后的代码,可以生成 10 组包含 7 个 RGB 颜色、播放模式和强度的灯光效果,并提供一个接口让单片机随机选择其中一组播放。原创 2024-12-27 16:51:57 · 166 阅读 · 0 评论 -
输入改为节假日(如“Spring Festival”、“Christmas” 等),并生成 10 组颜色值、播放模式和播放速度,模式和颜色根据节假日主题动态选择。
以下是更新的代码,将输入改为节假日(如“Spring Festival”、“Christmas” 等),并生成 10 组颜色值、播放模式和播放速度,模式和颜色根据节假日主题动态选择。原创 2024-12-27 16:07:41 · 159 阅读 · 0 评论 -
情绪算法加强版
以下是扩展后的代码,新增了灯珠的播放速度。播放速度根据情绪强度(intensity)动态计算,范围为0-100。强度越高,速度越快。原创 2024-12-27 16:02:44 · 189 阅读 · 0 评论 -
完整的 JavaScript 算法,支持输入情绪类型和情绪强度,输出 10 组颜色 RGB 值及其对应的播放模式(模式与颜色根据情绪类型动态选择)
以下是扩展后的代码,新增了灯珠的播放速度。播放速度根据情绪强度(intensity)动态计算,范围为0-100。强度越高,速度越快。原创 2024-12-27 15:52:32 · 353 阅读 · 0 评论 -
输入第一个参数为 Joy(欣喜)、Calm(平和)、Sadness(悲伤)、Anger(愤怒)、Surprise(惊奇)、Fear(恐惧)、Disgust(厌恶)、Nostalgia(怀旧),第二个参
以下是完整的 JavaScript 算法,支持输入情绪类型和情绪强度,输出 10 组颜色 RGB 值及其对应的播放模式(模式与颜色根据情绪类型动态选择)。原创 2024-12-27 15:49:51 · 436 阅读 · 0 评论 -
节假日生成相应的颜色值和强度的算法。节假日的主题颜色和对应的强度值已经内置在算法中。用户输入节假日名称
以下是一个根据指定的节假日生成相应的颜色值和强度的算法。节假日的主题颜色和对应的强度值已经内置在算法中。用户输入节假日名称,算法根据节假日选择适当的颜色值和强度,并生成多组颜色。原创 2024-12-27 12:04:05 · 247 阅读 · 0 评论 -
modeIndex 扩展为 10 个模式下标,每个值根据输入颜色的情绪对应 2~3 种适合的模式随机选择。这样确保情绪与模式的匹配更灵活,同时每个模式下标都从适合的模式列表中随机生成。
以下是修改后的算法,将modeIndex扩展为 10 个模式下标,每个值根据输入颜色的情绪对应 2~3 种适合的模式随机选择。这样确保情绪与模式的匹配更灵活,同时每个模式下标都从适合的模式列表中随机生成。原创 2024-12-27 12:00:52 · 348 阅读 · 0 评论 -
颜色的对应 HSV 值。我们通过将 RGB 值转换为 HSV 值,将结果包含在输出中。
以下是改进后的代码版本,在输出结果中增加了颜色的对应。我们通过将RGB值转换为HSV值,将结果包含在输出中。原创 2024-12-27 11:29:20 · 208 阅读 · 0 评论 -
每个节日对应的 基准颜色值(不再生成具体每个灯珠的颜色数组),以及动画的 变化速度 和 模式。
以下是更新后的算法,将节日与模式做了对应,每个节日默认支持一组更适合的模式(避免完全随机),并使用英文模式名称和节日名称。原创 2024-12-27 11:26:40 · 198 阅读 · 0 评论 -
针对常见节日(“春节、圣诞节、万圣节、复活节、排灯节、独立日、感恩节、五月五日节”)生成对应的 WS2812 幻彩灯珠颜色序列
下面给出一个示例的 JavaScript 函数,针对常见节日(“春节、圣诞节、万圣节、复活节、排灯节、独立日、感恩节、五月五日节”)生成对应的 WS2812 幻彩灯珠颜色序列。原创 2024-12-27 10:56:34 · 245 阅读 · 0 评论 -
基于ESP32-S3 的 openai-realtime-embedded-sdk,国内实时性实测
实现近实时、低延时的推理、语音交互或其他 AI 功能。根据你的描述,你已经在国内测试,延时大概,体验还不错。下面是一个示例方案思路和项目结构,供更多朋友或项目组参考。实测openai-realtime-embedded-sdk在ESP32-S3实时对话,延迟在500ms左右实测openai-realtime-embedded-sdk在ESP32-S3实时对话,延迟在500ms左右。原创 2024-12-27 10:15:51 · 2408 阅读 · 0 评论 -
整理一下在 ESP32-C3 上“实际可用 RAM”少于资料中标注的 400 KB 的原因,以及在 只使用 Wi-Fi、不使用蓝牙 时如何尽量多地“腾”出可用 RAM 的常见做法和思路
下面给你整理一下在 ESP32-C3 上“实际可用 RAM”少于资料中标注的 400 KB 的原因,以及在时如何尽量多地“腾”出可用 RAM 的常见做法和思路。原创 2024-12-25 17:23:28 · 777 阅读 · 0 评论 -
给出一个基于 ESP32(Espressif ESP-IDF)来连接并向蓝牙耳机发送音频的方案示例。该方案的核心思路是让 ESP32 充当「A2DP Source」(与手机类似)
功能需求ESP32 作为蓝牙主机(A2DP Source),负责发送音频数据。蓝牙耳机作为从机(A2DP Sink),接收并播放音频。实现思路使用 ESP-IDF 提供的 Classic Bluetooth(蓝牙 2.1+EDR)A2DP Source API。在 ESP32 上实现蓝牙初始化、搜索并连接蓝牙耳机、发送音频数据的流程。可以通过 I2S、PCM 数据或生成的波形等方式,为 A2DP 数据提供音源。原创 2024-12-25 17:19:29 · 3697 阅读 · 1 评论 -
esp-csi 结合灯带控制器,设计一个算法,实现人动灯带动,人停灯带停的功能
下面的思路示例,将基于(Channel State Information)做 Wi-Fi 感知来检测“人是否在移动”,并结合一条(如 WS2812B、APA102 等可编程 LED,或常见的可调光灯带)来实现“人动灯带动,人停灯带停”的效果。这个思路可以视为一个概念性/参考性方案,实际落地时需根据硬件、环境和算法需求进行调整与优化。原创 2024-12-24 10:36:05 · 889 阅读 · 0 评论 -
esp-csi 结合灯带控制器,设计一个算法,实现人动灯带动,人停灯带停的功能
下面的思路示例,将基于(Channel State Information)做 Wi-Fi 感知来检测“人是否在移动”,并结合一条(如 WS2812B、APA102 等可编程 LED,或常见的可调光灯带)来实现“人动灯带动,人停灯带停”的效果。这个思路可以视为一个概念性/参考性方案,实际落地时需根据硬件、环境和算法需求进行调整与优化。原创 2024-12-24 10:30:47 · 989 阅读 · 0 评论 -
给出一个多跳转发(Mesh/链式)控制方案的设计思路,结合了消息ID去重以及**转发计数(TTL, Time To Live)**的策略,并考虑到在 20公里、每盏灯相距 50米 的场景中,需要对所有
消息 ID + TTL是最普适、最易实现的去重+防环机制;msg_id要有足够大空间+合理生成规则,确保较长时间内不重复。ttl初始值设到可覆盖网络最深节点(400~500),再由每次转发递减。路灯节点保存已转发 ID保证同一消息不会被重复广播;缓存需要有过期清理或大小上限;线性网络 vs Mesh广播若路灯严格一字排开且只有一个或少数控制点,可采用单方向串行转发(只给下一个节点),简单且数据量最小;若需要高鲁棒性或多点控制,采用泛洪式 Mesh 可以让消息自动遍历整条路,但需考虑随机延时。原创 2024-12-23 16:21:45 · 997 阅读 · 0 评论 -
生成一个完整的js代码,和python类似的,可以直接调用
下面是一份,功能与之前给你的 Python 脚本rle_bmp.py类似:可以,对其像素进行,然后验证是否能够恢复出与原图一致的 BMP 文件。:以下代码仅适用于(无调色板、无额外头),并且假设 BMP 头为。若 BMP 内部有行对齐或其他扩展,脚本依然会将 54 字节当做“头”保留下来,其余全部当作 BGR 像素数据做 RLE 处理。原创 2024-12-23 15:25:23 · 969 阅读 · 0 评论 -
有没有支持一个30KB内存,可以完整的
本示例不需一次性读入整个压缩文件,也不需一次性存储解压后所有像素,仅用一个小缓冲chunk即可完成RLE解压。全程内存占用大约是“BMP头 + 4KB缓冲 + 若干局部变量”,通常10KB以内就够,完全满足“30KB内存限制”的需求。通过这种“流式”设计,你就可以在资源有限的嵌入式环境下顺利解压并生成BMP文件(或直接渲染到显存等)。这就是一个完整、带main、支持“有限内存(30KB)”场景的RLE解压示例。你可以直接编译并根据自己的硬件/系统环境做适当修改,实现在低内存场景下的图像解压。原创 2024-12-23 15:06:05 · 1023 阅读 · 0 评论 -
这个原图是bmp,设计一个最简单的算法,让嵌入式也能用,让js压缩,纯C语言解压缩
该方案的优点非常直观、易实现,既能在JS端(上位机或Node环境)快速压缩,也能在任何普通C环境下轻松解码;只要BMP文件头保持完整,解压后就能得到一个在通用图像软件可打开的标准BMP。缺点RLE本身对颜色反复变化的图像压缩效果有限,遇到噪点或渐变很多时压缩比不高;仍需保存BMP头原样,图像整体大小可能还不够“极致”地小。改进思路如果要更好的压缩比,可以对像素做分块 + RLE或哈夫曼/LZ类算法;若嵌入式端性能允许,也可以考虑直接使用已有的JPEG/PNG编码库;原创 2024-12-23 15:04:56 · 825 阅读 · 0 评论 -
这个原图是bmp,设计一个最简单的算法,让嵌入式也能用,让js压缩,纯C语言解压缩
该方案的优点非常直观、易实现,既能在JS端(上位机或Node环境)快速压缩,也能在任何普通C环境下轻松解码;只要BMP文件头保持完整,解压后就能得到一个在通用图像软件可打开的标准BMP。缺点RLE本身对颜色反复变化的图像压缩效果有限,遇到噪点或渐变很多时压缩比不高;仍需保存BMP头原样,图像整体大小可能还不够“极致”地小。改进思路如果要更好的压缩比,可以对像素做分块 + RLE或哈夫曼/LZ类算法;若嵌入式端性能允许,也可以考虑直接使用已有的JPEG/PNG编码库;原创 2024-12-23 12:21:24 · 1165 阅读 · 0 评论 -
在嵌入式系统中使用,帮我设计一个压缩算法,要求详细并且有代码,嵌入式端基于ESP-idf,上位机基于微信小程序,也要给出js的代码
/ 假设在此处我们自己添加一个base64编码函数,也可以使用 esp32/esp-idf 内置的 base64 库。64// 示例图像宽64// 示例图像高// 这里假定我们有一个全局的图像像素缓冲, RGB888格式// 3字节RGB在实际项目中,图像数据imageData可能来自SPI Flash、摄像头采集、或是静态数组等,具体情况而定。通过以上示例,我们已经在ESP-IDF(C语言)端实现了一个简单的行列扫描 + RLE压缩,并在微信小程序(JavaScript)端实现了对应的。原创 2024-12-23 09:36:56 · 1273 阅读 · 0 评论 -
通过调用 ChatGPT API 完成情绪或语义分析,再将分析结果以特定色彩/动画方式可视化地呈现在 500 颗 WS2812 RGB LED 上,为用户带来生动的情感反馈体验
ChatGPT API 情绪/语义分析用户输入一段文字或语音转文字内容(如聊天对话、情绪描述等)。系统通过调用 ChatGPT API(或相似的情感分析 Prompt)来获取情感标签或情绪强度等信息。WS2812 灯带颜色/动画展示根据 API 返回的情绪类别(如高兴、悲伤、愤怒、紧张、平静、惊喜等),控制 500 颗 WS2812 灯珠显示相应的主题颜色或渐变动画。可实现更多丰富效果,如流动渐变、脉冲闪烁、波浪形扩散等,来增强情感表达。可选扩展功能。原创 2024-12-21 19:12:18 · 686 阅读 · 0 评论 -
CozyLife 设备配置Home Assistant MQTT说明文档
注:以下内容简述了在CozyLife APP端给设备配置Home Assistant MQTT 端口信息,使其Home Assistant系统也可以控制CozyLife设备。在此界面请填写你的HA端MQTT的配置信息,如图4-4中依次填写内容。请在图4界面配置你的MQTT信息,分别如图中顺序填写你信息,填写完成后点击Next。如果不出问题就会看到图5-5中连接成功绿色标记,说明设备可以在HA端就进行控制CozyLife设备了。在图3-3中打开HA开关,接着进入配置界面如图4-4。点击标注3进入,如图4。原创 2024-12-21 18:11:30 · 540 阅读 · 0 评论 -
设计一个用esp32检测咖啡浓度的方案,要求详细,并且要有实现的代码
通过上述方案,使用 ESP32 + TDS 传感器即可实现对咖啡浓度(TDS)的基本检测。示例代码演示了如何读取模拟电压并转换为 ppm,同时示范了一个简易温度补偿逻辑。在实际量产或深入研究时,需要结合硬件特性进行完整的标定和校准,并且可配合显示屏或网络传输功能打造更完善的咖啡浓度检测系统。原创 2024-12-21 10:12:30 · 1131 阅读 · 0 评论