多分类交叉熵损失函数的梯度计算过程推导

Softmax函数公式:
在这里插入图片描述
Si 代表的是第i个神经元的输出
在这里插入图片描述
其中wij 是第i个神经元的第 j 个权重,b是偏移值。zi 表示该网络的第i个输出

隐藏层输出经过softmax:
在这里插入图片描述
具体过程如下图所示:
在这里插入图片描述
神经元输出结果
z4 = w1x1+w2x2+w3x3
z5 = w4
x1+w5x2+w6x3
z6 = w7x1+w8x2+w9*x3
经过softmax函数得到
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

多分类损失函数公式:
在这里插入图片描述其中yi表示真实的分类结果

利用损失函数求梯度
在这里插入图片描述
在这里插入图片描述已知不做推导

求解书过程推导:
在这里插入图片描述
在这里插入图片描述
如果i等于j:
在这里插入图片描述
如果i不等于j:
在这里插入图片描述
在这里插入图片描述
针对分类问题,给定的结果yi 最终只会有一个类别是1,其他类别都是0,因此,对于分类问题,这个梯度等于:
在这里插入图片描述

多分类交叉熵损失函数多分类任务中被广泛使用。在TensorFlow中,有两种常见的多分类交叉熵损失函数:sparse_categorical_crossentropy和categorical_crossentropy。这两种损失函数计算方式略有不同。 sparse_categorical_crossentropy适用于标签以整数形式表示的情况。它会将标签转换为one-hot编码形式,并计算每个样本的交叉熵损失。然后将所有样本的损失加起来并平均。这种损失函数适用于标签具有互斥关系的情况,例如将图像分类为不同的类别。 categorical_crossentropy适用于标签以one-hot编码形式表示的情况。它直接计算每个样本的交叉熵损失,并将所有样本的损失加起来并平均。这种损失函数适用于标签具有互斥关系的情况,例如将图像分类为不同的类别。 总结起来,多分类交叉熵损失函数多分类任务中用于衡量模型预测结果与真实标签之间的差异。它可以帮助模型学习如何更好地分类不同的类别。 #### 引用[.reference_title] - *1* *2* *3* [sparse_categorical_crossentropy/categorical_crossentropy/binary_crossentropy交叉熵损失](https://blog.csdn.net/IT142546355/article/details/127022685)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值