4-1 机器学习 --- 支持向量机

本文详细介绍了支持向量机(SVM),包括其作为小样本非线性高维识别的优势,重点讨论了SVM的线性核函数、高斯核(RBF)和多项式核函数。SVM旨在找到最大间隔的超平面,并通过核函数解决非线性问题。此外,文章还探讨了不同核函数在回归和分类任务上的应用,特别是在iris数据集上的分类实践。
摘要由CSDN通过智能技术生成
一、什么是SVM:

SVM支持向量机,主要针对小样本数据,非线性及高维模式识别中表现出许多特有的优势,而且有很好的泛华能力。

二、SVM原理:低维空间映射到高维空间

超平面和最近的数据点之间的间隔被称为分离边缘,用P表示。支持向量机的目标是找到一个特殊的超平面,对于这个超平面分离边缘P最大。

三、SVM线性核函数:

线性核函数解决线性问题

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.svm import SVC
from sklearn import datasets

# 随机生成一些点,默认100个,两个中心点,两个特征(0,1)
X,y = datasets.make_blobs(centers=2)
plt.scatter(X[:,0],X[:,1],c=y)

# 线性问题
svc = SVC(kernel = "linear")
# 核函数说明:kernel:"linear	poly	rbf		sigmoid		precomputed" ---- 低维变高维
svc.fit(X,y)

# 两个属性,两个斜率
w_ = svc.coef_
# 截距
b_ = svc.intercept_

f_z = lambda x,y : x*w_[0,0] + y*w_[0,1] + b_[0]

# 画3D图

from mpl_tooklkits.mplot3d.axes3d import Axes3D
fig = plt.figure(figsize=(9,6))

axes3D = Axes3D(fig)

axes3D.scatter(X[:0],X[:,1],0,c = y)

# 绘制 分割线
x1 = np.linspace(-4,6,100)
y1 = np.linspace(6,13,100)
z1 = f_z(x1,y1)
axes3D.plot(x1,y1,z1)

# 调整角度
axes3D.view_init() 

# 支持向量
sv = svc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值