大型央国企“信创化”与数字化转型建设思路

一、央国企信创化与数字化转型时代背景

1、信创概念普及:

信创,即“信息技术应用创新”。是我国自主信息产业聚焦的核心,旨在通过对IT硬件、软件等各个环节的重构,基于我国自有IT底层架构和标准,形成自有开放生态,从根本上解决本质安全问题,实现信息技术可掌控、可研究、可发展、可生产。

信创发展不仅是一项国家战略,也是当今形势下国家经济发展的新引擎。近几年信创产业的蓬勃发展已经成为各行业数字化转型和产业链提升的关键。

2、央国企信创化的时代背景与战略指引

时光荏苒,回首过往数十年,我国网信安全、高端技术卡脖子事件频发。

如2008年的“微软黑屏事件”、2010年的“震网病毒事件”、2013年的“凌镜门事件”、2018年的“中兴事件”以及2019年备受瞩目的“华为事件”。这一系列事件暴露出我国在关键技术与基础软件领域的短板。

然而,正是在这样的挑战与压力之下,我国信创化政策如春风拂面,应运而生。自2006年起,便引领着我国踏上了信创化的征程。

  • 2006年,《核高基》科技专项启动,标志着信创产业的起步。
  • 2012年,《电子信息制造业“十二五”发展规划》明确了信创产业发展思路。
  • 2016年,《“十三五”国家信息化规划》提出网络安全和信息化的重要性。
  • 2021年,《“十四五”推进国家政务信息化规划》发布,强调数字技术创新和关键核心技术的提升。
  • 2022年,国家发布“79号”文件,要求到2027年央企、国企100%完成信创替代,标志着信创化发展的关键时期。
  • 2023年,国务院发布《数字中国建设整体布局规划》,强调央国企要全面落实信创替代。

通过上述政策文件不难看出,信创产业已成为我国经济发展的新动能。特别是进入“十四五”时期,科技强国自主可控再次被国

### YOLO算法常见面试问题及解决方案 #### 1. YOLO的核心思想是什么? YOLO(You Only Look Once)是一种端到端的目标检测框架,其核心思想是将目标检测视为回归问题。通过单次前向传播完成边界框预测和类别概率估计,从而实现了高效的目标检测[^2]。 #### 2. YOLOv4的改进方法有哪些分类? YOLOv4的改进方法主要分为两类: - **Bag of Freebies (BoF)**:这些技术仅在训练过程中应用,不会增加推理阶段的时间开销。例如数据增强、损失函数调整等[^1]。 - **Bag of Specials (BoS)**:这些技术会在模型中引入额外的模块或操作,虽然会略微增加推理成本,但能够显著提升检测精度。例如CBAM注意力机制、DropBlock正则化等。 #### 3. 如何解决数据量不足的问题? 当面临数据集较小的情况时,可以通过以下方式缓解domain shift带来的负面影响: - 使用迁移学习,利用预训练权重初始化网络参数。 - 应用数据增强技术,如随机裁剪、翻转、颜色抖动等。 - 尝试合成数据生成工具来扩充数据集[^4]。 #### 4. ROI Pooling 和 ROI Align 的区别是什么? ROI Pooling 是一种用于提取固定大小特征图的技术,在 Faster R-CNN 中被广泛使用。然而,由于量化过程的存在,可能会导致位置信息丢失。而 ROI Align 则摒弃了粗暴的量化操作,改用双线性插值获取精确坐标上的特征值,因此保留了更丰富的细节信息。 #### 5. K-means 聚类在 YOLO 中的作用是什么? 为了优化先验框的设计,YOLov2 提出了基于 k-means 聚类的方法来生成锚框尺寸。具体做法如下: - 对标注好的真实边界框宽高进行聚类分析。 - 计算每组样本与其对应簇心之间的距离度量(通常采用 IOU 表达的距离定义)。 - 不断更新各簇中心直至收敛得到最优解集合[^5]。 ```python import numpy as np def iou_distance(box, centroid): """计算box与centroid间的IOU距离""" intersection_width = min(box[0], centroid[0]) * 2 intersection_height = min(box[1], centroid[1]) * 2 if intersection_width < 0 or intersection_height < 0: return float('inf') intersection_area = intersection_width * intersection_height box_area = box[0]*box[1] centroid_area = centroid[0]*centroid[1] iou = intersection_area / (box_area + centroid_area - intersection_area) return 1 - iou def kmeans(boxes, k=9, dist_func=iou_distance): num_boxes = len(boxes) last_nearest = np.zeros((num_boxes,)) centroids = boxes[np.random.choice(num_boxes, k, replace=False)] while True: nearest_centroids_ids = [] for b in boxes: distances = [dist_func(b, c) for c in centroids] nearest_centroid_id = int(np.argmin(distances)) nearest_centroids_ids.append(nearest_centroid_id) if (last_nearest == nearest_centroids_ids).all(): break for idx in range(k): selected_boxes = [b for b, cid in zip(boxes, nearest_centroids_ids) if cid==idx] if not selected_boxes: continue new_cx = sum([b[0] for b in selected_boxes])/len(selected_boxes) new_cy = sum([b[1] for b in selected_boxes])/len(selected_boxes) centroids[idx] = [new_cx, new_cy] last_nearest = nearest_centroids_ids return centroids ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值