题目一
以 N 型半导体为例,它的多数载流子是自由电子,即自由电子浓度 n>空
穴浓度 p,那么它是否保持电中性?为什么?
答:
- 仍保持电中性;
- 首先明确概念,在本征半导体中,由于本征激发,产生的自由电子数恒等于空穴数。N型半导体是指在硅或锗的晶体中掺入了少量的V族元素作为杂质元素,如磷、锑、砷等,即构成N型半导体(或称之为电子型半导体)
- 从宏观上讲,本征半导体是呈电中性的,掺入的杂质原子也是呈电中性的,所以最终得到的N型半导体也是呈电中性的;
- 从微观上讲,N型半导体的自由电子浓度远远高于空穴浓度,所以在N型半导体中,自由电子是多子,空穴是少子;原子核外有5个价电子的原子,其中四个分别与硅形成共价键,多余一个电子只受原子核的束缚,在室温下会发生电离挣脱原子核的束缚,产生自由电子和正离子;自由电子数=正离子数+空穴数;因为自由电子带负电,正离子和空穴都带相同电量的正电,故N型半导体仍保持电中性。
题目二
已知半导体同时掺杂施主杂质(浓度为
N
D
N_D
ND,表示每
c
m
3
cm^3
cm3施主原子个数)
和受主杂质(浓度为
N
A
N_A
NA,表示每
c
m
3
cm^3
cm3受主原子个数)。为了得到 n、p,
请回答以下问题。
(1) 请问在此半导体中,以下哪些是带正电的?(可多选) AD
A. 电离施主 B. 电离受主 C. 自由电子 D. 空穴
(2) 请问在此半导体中,以下哪些是带负电的?(可多选) BC
A. 电离施主 B. 电离受主 C. 自由电子 D. 空穴
(3) 已知 q 表示一个粒子电量(如空穴看作带+q 的粒子,电子看作带
-q 的粒子),结合(1)、(2),写出此半导体呈电中性的表达式。
答:
- 对于本征半导体而言,自由电子浓度恒等于空穴浓度
- 因为该半导体既掺杂了施主杂质又掺杂了受主杂质,所以需要分情况分析
- 对于施主杂质而言,自由电子数d=空穴数d+施主离子数。
- 对于受主杂质而言,空穴数a=自由电子数a+受主离子数。
- 由上述两个式子作减法可以得到自由电子数d+自由电子数a+受主离子数=空穴数d+空穴数a+施主离子数;即自由电子数+受主离子数=空穴数+施主离子数;如果杂质全部电离可以得到 n + N A = p + N D n+N_A=p+N_D n+NA=p+ND,此时半导体呈电中性。
(4)已知
n
p
=
n
i
2
np=n_i^2
np=ni2,
n
i
n_i
ni为已知的本征硅中自由电子浓度。结合(3),解方程组得到 n 的表达式。
答: 将
n
p
=
n
i
2
np=n_i^2
np=ni2代入可求得
n
=
(
N
D
−
N
A
)
+
(
N
D
−
N
A
)
2
+
4
n
i
2
2
n=\frac{\left(N_D-N_A\right)+\sqrt{\left(N_D-N_A\right)^2+4n_i^2}}{2}
n=2(ND−NA)+(ND−NA)2+4ni2
参考网址
题目三
下图的 MOS 晶体管各是什么类型,标明每个 MOS 晶体管的栅、源、漏极,
分析它们的工作状态,设所有晶体管的阀值电压的绝对值都是 1V。
答:
(a)n沟道增强型,
V
G
=
5
v
,
V
S
=
0
v
,
V
D
=
2
v
;
V
G
S
=
5
v
,
V
D
S
=
2
v
,
V
T
=
1
v
,
V_G=5v,V_S=0v,V_D=2v;V_{GS}=5v,V_{DS}=2v,V_T=1v,
VG=5v,VS=0v,VD=2v;VGS=5v,VDS=2v,VT=1v,因为
V
G
S
>
V
T
V_{GS}\gt V_T
VGS>VT,所以是导通状态;
0
<
=
V
D
S
<
V
G
S
−
V
T
0<=V_{DS}<V_{GS}-V_T
0<=VDS<VGS−VT,所以是线性区;
(b)n沟道增强型,
V
G
=
5
v
,
V
S
=
0.4
v
,
V
D
=
5
v
;
V
G
S
=
4.6
v
,
V
D
S
=
4.6
v
,
V
T
=
1
v
,
V_G=5v,V_S=0.4v,V_D=5v;V_{GS}=4.6v,V_{DS}=4.6v,V_T=1v,
VG=5v,VS=0.4v,VD=5v;VGS=4.6v,VDS=4.6v,VT=1v,因为
V
G
S
>
V
T
V_{GS}>V_T
VGS>VT,所以是导通状态;
V
D
S
>
V
G
S
−
V
T
V_{DS}>V_{GS}-V_T
VDS>VGS−VT,所以是饱和区;
(c)n沟道耗尽型,
V
G
=
1
v
,
V
S
=
1
v
,
V
D
=
5
v
;
V
G
S
=
0
v
,
V
D
S
=
4
v
,
V
T
=
−
1
v
,
V_G=1v,V_S=1v,V_D=5v;V_{GS}=0v,V_{DS}=4v,V_T=-1v,
VG=1v,VS=1v,VD=5v;VGS=0v,VDS=4v,VT=−1v,因为
V
G
S
>
V
T
V_{GS}>V_T
VGS>VT,所以是导通状态;
V
D
S
>
V
G
S
−
V
T
V_{DS}>V_{GS}-V_T
VDS>VGS−VT,所以是饱和区;
(d)p沟道增强型,
V
G
=
2
v
,
V
S
=
5
v
,
V
D
=
4
v
;
V
G
S
=
−
3
v
,
V
D
S
=
−
1
v
,
V
T
=
−
1
v
V_G=2v,V_S=5v,V_D=4v;V_{GS}=-3v,V_{DS}=-1v,V_T=-1v
VG=2v,VS=5v,VD=4v;VGS=−3v,VDS=−1v,VT=−1v,因为
∣
V
G
S
∣
>
∣
V
T
∣
\left|V_{GS}\right|\gt \left|V_T\right|
∣VGS∣>∣VT∣,所以是导通状态,
∣
V
D
S
∣
<
∣
V
G
S
−
V
T
∣
\left|V_{DS}\right|\lt \left|V_{GS}-V_T\right|
∣VDS∣<∣VGS−VT∣,所以是线性区
题目四
如图所示,
M
1
M_1
M1和
M
2
M_2
M2两管串联,且
V
B
<
V
G
−
V
T
<
V
A
V_B\lt V_G-V_T < V_A
VB<VG−VT<VA,
请问:
(1) 若都是 NMOS,它们各工作在什么状态?
(2) 若都是 PMOS,它们各工作在什么状态?
(3) 证明两管串联的等效导电因子是
K
e
f
f
=
K
1
K
2
K
1
+
K
2
K_{eff}=\frac{K_1K_2}{K_1+K_2}
Keff=K1+K2K1K2
答:
(1)设中间节点为C。对于该n沟道增强型,
V
T
>
0
V_T\gt 0
VT>0。首先分析电路是否导通或者截止,其次分析是位于线性区还是饱和区;当
V
c
V_c
Vc比较小的时候,电荷会聚集到C点,使
V
c
V_c
Vc上升。当
V
c
V_c
Vc上升到大于
V
A
V_A
VA时,
M
1
M_1
M1管截止,
M
2
M_2
M2管会向下放电,使
V
c
V_c
Vc下降。当
V
c
<
V
G
−
V
T
V_c\lt V_G-V_T
Vc<VG−VT时,电路处于稳态,
M
1
M_1
M1管导通,
V
A
−
V
C
>
V
G
−
V
C
−
V
T
V_A-V_C\gt V_G-V_C-V_T
VA−VC>VG−VC−VT,所以
M
1
M_1
M1处于饱和区;此时对于
M
2
M_2
M2而言,
V
G
−
V
B
>
V
T
V_G-V_B\gt V_T
VG−VB>VT,
M
2
M_2
M2管导通,
V
C
−
V
B
<
V
G
−
V
B
−
V
T
V_C-V_B\lt V_G-V_B-V_T
VC−VB<VG−VB−VT,所以
M
2
M_2
M2处于线性区。
(2)对于该p沟道增强型,
V
T
<
0
V_T\lt 0
VT<0;首先分析电路是否导通或者截止,其次分析是位于线性区还是饱和区;当
V
c
V_c
Vc比较高的时候,负电荷向C点聚集,
V
c
V_c
Vc下降;当
V
c
V_c
Vc下降到小于
V
B
V_B
VB时,
M
2
M_2
M2管截止,
M
1
M_1
M1管向下给
V
c
V_c
Vc充电;当
V
c
>
V
G
−
V
T
V_c\gt V_G-V_T
Vc>VG−VT时,电路处于稳态,
M
2
M_2
M2导通,
V
B
−
V
C
<
V
G
−
V
T
−
V
C
V_B-V_C\lt V_G-V_T-V_C
VB−VC<VG−VT−VC,所以
M
2
M_2
M2处于饱和区;此时对于
M
1
M_1
M1而言,
V
G
−
V
A
<
V
T
V_G-V_A\lt V_T
VG−VA<VT,
M
1
M_1
M1导通,
V
C
−
V
A
>
V
G
−
V
A
−
V
T
V_C-V_A\gt V_G-V_A-V_T
VC−VA>VG−VA−VT,所以
M
1
M_1
M1处于线性区。
(3)此题以NMOS管为例,两个NMOS管等效为一个NMOS管后,根据
V
B
<
V
G
−
V
T
<
V
A
V_B\lt V_G-V_T\lt V_A
VB<VG−VT<VA得,该等效管工作于饱和区。故有以下方程
I
D
1
=
K
1
(
V
G
−
V
T
−
V
C
)
2
I_{D1}=K_1\left(V_G-V_T-V_C\right)^2
ID1=K1(VG−VT−VC)2
I
D
2
=
K
2
[
(
V
G
−
V
T
−
V
B
)
2
−
(
V
G
−
V
T
−
V
C
)
2
]
I_{D2}=K_2\left[\left(V_G-V_T-V_B\right)^2-\left(V_G-V_T-V_C\right)^2\right]
ID2=K2[(VG−VT−VB)2−(VG−VT−VC)2]
I
D
e
f
f
=
K
e
f
f
(
V
G
−
V
T
−
V
B
)
2
I_{Deff}=K_{eff}\left(V_G-V_T-V_B\right)^2
IDeff=Keff(VG−VT−VB)2
则有
I
D
1
K
1
+
I
D
2
K
2
=
I
D
e
f
f
K
e
f
f
\frac{I_{D1}}{K_1}+\frac{I_{D2}}{K_2}=\frac{I_{Deff}}{K_{eff}}
K1ID1+K2ID2=KeffIDeff,由
I
D
1
=
I
D
2
=
I
D
e
f
f
I_{D1}=I_{D2}=I_{Deff}
ID1=ID2=IDeff知
K
e
f
f
=
K
1
K
2
K
1
+
K
2
K_{eff}=\frac{K_1K_2}{K_1+K_2}
Keff=K1+K2K1K2
题目五
标准
0.13
μ
m
0.13\mu m
0.13μm CMOS 工艺,PMOS 管
W
L
=
0.4
μ
m
0.2
μ
m
,
t
o
x
=
2.6
n
m
\frac{W}{L}=\frac{0.4\mu m}{0.2\mu m},t_{ox}=2.6nm
LW=0.2μm0.4μm,tox=2.6nm,空穴迁移率
μ
p
=
80
c
m
2
/
V
⋅
s
\mu_p=80cm^2/V·s
μp=80cm2/V⋅s,阈值电压
V
T
=
−
0.3
V
V_T= -0.3V
VT=−0.3V,利用手算,对于
V
G
S
=
−
1.2
V
,
−
0.8
V
,
0
V
V_{GS}=-1.2V, -0.8V, 0V
VGS=−1.2V,−0.8V,0V,分别画出
I
D
S
I_{DS}
IDS 和
V
D
S
V_{DS}
VDS 的关系曲线。
答:
公式
I
D
=
β
[
(
V
G
S
−
V
T
)
V
D
S
−
1
2
V
D
S
2
]
(
线
性
区
)
I_D=\beta \left[\left(V_{GS}-V_T\right)V_{DS}-\frac{1}{2}V_{DS}^2\right](线性区)
ID=β[(VGS−VT)VDS−21VDS2](线性区)
I
D
=
β
2
(
V
G
S
−
V
T
)
2
(
饱
和
区
)
I_D=\frac{\beta}{2}\left(V_{GS}-V_T\right)^2(饱和区)
ID=2β(VGS−VT)2(饱和区)
β
=
W
L
μ
e
f
f
C
o
x
,
C
o
x
=
ϵ
0
ϵ
o
x
t
o
x
\beta =\frac{W}{L}\mu_{eff}C_{ox},C_{ox}=\frac{\epsilon_0\epsilon_{ox}}{t_{ox}}
β=LWμeffCox,Cox=toxϵ0ϵox
导电因子
β
=
μ
n
C
o
x
W
L
=
80
×
3.9
×
8.85
×
1
0
−
14
2.6
×
1
0
−
7
(
W
L
)
=
106
(
W
L
)
(
μ
A
⋅
V
−
2
)
\beta =\mu_nC_{ox}\frac{W}{L}=80\times\frac{3.9\times8.85\times10^{-14}}{2.6\times10^{-7}}\left(\frac{W}{L}\right)=106\left(\frac{W}{L}\right)\left(\mu A·V^{-2}\right)
β=μnCoxLW=80×2.6×10−73.9×8.85×10−14(LW)=106(LW)(μA⋅V−2)
对于该PMOS管,阈值电压 V T = − 0.3 V V_T= -0.3V VT=−0.3V,利用手算,对于 V G S = − 1.2 v V_{GS}=-1.2v VGS=−1.2v,由于 ∣ V G S ∣ > ∣ V T ∣ \left|V_{GS}\right|\gt \left|V_T\right| ∣VGS∣>∣VT∣,所以处于导通状态。 V D S V_{DS} VDS的临界值为 V G S − V T = − 0.9 v V_{GS}-V_T=-0.9v VGS−VT=−0.9v,即 V D S ≤ − 0.9 v V_{DS}\le -0.9v VDS≤−0.9v,则处于饱和区, − 0.9 v < V D S ≤ 0 -0.9v\lt V_{DS}\le 0 −0.9v<VDS≤0则处于线性区。处于线性区时, I D = β [ ( V G S − V T ) V D S − 1 2 V D S 2 ] = 106 × 2 ( − 0.9 V D S − 1 2 V D S 2 ) I_D=\beta \left[\left(V_{GS}-V_T\right)V_{DS}-\frac{1}{2}V_{DS}^2\right]=106\times2\left(-0.9V_{DS}-\frac{1}{2}V_{DS}^2\right) ID=β[(VGS−VT)VDS−21VDS2]=106×2(−0.9VDS−21VDS2);处于饱和区时, I D = β 2 ( V G S − V T ) 2 = 106 × ( − 0.9 ) 2 = 85.86 I_D=\frac{\beta}{2}\left(V_{GS}-V_T\right)^2=106\times\left(-0.9\right)^2=85.86 ID=2β(VGS−VT)2=106×(−0.9)2=85.86
对于 V G S = − 0.8 v V_{GS}=-0.8v VGS=−0.8v,由于 ∣ V G S ∣ > ∣ V T ∣ \left|V_{GS}\right|\gt\left|VT\right| ∣VGS∣>∣VT∣,所以处于导通状态。 V D S V_{DS} VDS的临界值为 V G S − V T = − 0.5 v V_{GS}-V_T=-0.5v VGS−VT=−0.5v,即 V D S ≤ − 0.5 v V_{DS}\le-0.5v VDS≤−0.5v则处于饱和区, − 0.5 v < V D S ≤ 0 -0.5v\lt V_{DS}\le 0 −0.5v<VDS≤0则处于线性区。处于线性区时, I D = β [ ( V G S − V T ) V D S − 1 2 V D S 2 ] = 106 × 2 ( − 0.5 V D S − 1 2 V D S 2 ) I_D=\beta \left[\left(V_{GS}-V_T\right)V_{DS}-\frac{1}{2}V_{DS}^2\right]=106\times2\left(-0.5V_{DS}-\frac{1}{2}V_{DS}^2\right) ID=β[(VGS−VT)VDS−21VDS2]=106×2(−0.5VDS−21VDS2);处于饱和区时, I D = β 2 ( V G S − V T ) 2 = 106 × ( − 0.5 ) 2 = 26.5 I_D=\frac{\beta}{2}\left(V_{GS}-V_T\right)^2=106\times\left(-0.5\right)^2=26.5 ID=2β(VGS−VT)2=106×(−0.5)2=26.5
对于
V
G
S
=
0
v
V_{GS}=0v
VGS=0v,由于
∣
V
G
S
∣
<
∣
V
T
∣
\left|V_{GS}\right|\lt \left|VT\right|
∣VGS∣<∣VT∣,所以处于截止状态。