微电子电路第二章作业

CMOS集成电路中的基本元件

题目一

以 N 型半导体为例,它的多数载流子是自由电子,即自由电子浓度 n>空
穴浓度 p,那么它是否保持电中性?为什么?
答:

  • 仍保持电中性;
  • 首先明确概念,在本征半导体中,由于本征激发,产生的自由电子数恒等于空穴数。N型半导体是指在硅或锗的晶体中掺入了少量的V族元素作为杂质元素,如磷、锑、砷等,即构成N型半导体(或称之为电子型半导体)
  • 从宏观上讲,本征半导体是呈电中性的,掺入的杂质原子也是呈电中性的,所以最终得到的N型半导体也是呈电中性的;
  • 从微观上讲,N型半导体的自由电子浓度远远高于空穴浓度,所以在N型半导体中,自由电子是多子,空穴是少子;原子核外有5个价电子的原子,其中四个分别与硅形成共价键,多余一个电子只受原子核的束缚,在室温下会发生电离挣脱原子核的束缚,产生自由电子和正离子;自由电子数=正离子数+空穴数;因为自由电子带负电,正离子和空穴都带相同电量的正电,故N型半导体仍保持电中性。

题目二

已知半导体同时掺杂施主杂质(浓度为 N D N_D ND,表示每 c m 3 cm^3 cm3施主原子个数)
和受主杂质(浓度为 N A N_A NA,表示每 c m 3 cm^3 cm3受主原子个数)。为了得到 n、p,
请回答以下问题。
(1) 请问在此半导体中,以下哪些是带正电的?(可多选) AD
A. 电离施主 B. 电离受主 C. 自由电子 D. 空穴
(2) 请问在此半导体中,以下哪些是带负电的?(可多选) BC
A. 电离施主 B. 电离受主 C. 自由电子 D. 空穴
(3) 已知 q 表示一个粒子电量(如空穴看作带+q 的粒子,电子看作带
-q 的粒子),结合(1)、(2),写出此半导体呈电中性的表达式。
答:

  • 对于本征半导体而言,自由电子浓度恒等于空穴浓度
  • 因为该半导体既掺杂了施主杂质又掺杂了受主杂质,所以需要分情况分析
  • 对于施主杂质而言,自由电子数d=空穴数d+施主离子数。
  • 对于受主杂质而言,空穴数a=自由电子数a+受主离子数。
  • 由上述两个式子作减法可以得到自由电子数d+自由电子数a+受主离子数=空穴数d+空穴数a+施主离子数;即自由电子数+受主离子数=空穴数+施主离子数;如果杂质全部电离可以得到 n + N A = p + N D n+N_A=p+N_D n+NA=p+ND,此时半导体呈电中性。

(4)已知 n p = n i 2 np=n_i^2 np=ni2 n i n_i ni为已知的本征硅中自由电子浓度。结合(3),解方程组得到 n 的表达式。
答: n p = n i 2 np=n_i^2 np=ni2代入可求得 n = ( N D − N A ) + ( N D − N A ) 2 + 4 n i 2 2 n=\frac{\left(N_D-N_A\right)+\sqrt{\left(N_D-N_A\right)^2+4n_i^2}}{2} n=2(NDNA)+(NDNA)2+4ni2

参考网址

受主与施主

题目三

下图的 MOS 晶体管各是什么类型,标明每个 MOS 晶体管的栅、源、漏极,
分析它们的工作状态,设所有晶体管的阀值电压的绝对值都是 1V。
CMOS
答:
(a)n沟道增强型, V G = 5 v , V S = 0 v , V D = 2 v ; V G S = 5 v , V D S = 2 v , V T = 1 v , V_G=5v,V_S=0v,V_D=2v;V_{GS}=5v,V_{DS}=2v,V_T=1v, VG=5vVS=0vVD=2vVGS=5vVDS=2vVT=1v因为 V G S > V T V_{GS}\gt V_T VGS>VT,所以是导通状态; 0 < = V D S < V G S − V T 0<=V_{DS}<V_{GS}-V_T 0<=VDS<VGSVT,所以是线性区;
(b)n沟道增强型, V G = 5 v , V S = 0.4 v , V D = 5 v ; V G S = 4.6 v , V D S = 4.6 v , V T = 1 v , V_G=5v,V_S=0.4v,V_D=5v;V_{GS}=4.6v,V_{DS}=4.6v,V_T=1v, VG=5vVS=0.4vVD=5vVGS=4.6vVDS=4.6vVT=1v因为 V G S > V T V_{GS}>V_T VGS>VT,所以是导通状态; V D S > V G S − V T V_{DS}>V_{GS}-V_T VDS>VGSVT,所以是饱和区;
(c)n沟道耗尽型, V G = 1 v , V S = 1 v , V D = 5 v ; V G S = 0 v , V D S = 4 v , V T = − 1 v , V_G=1v,V_S=1v,V_D=5v;V_{GS}=0v,V_{DS}=4v,V_T=-1v, VG=1vVS=1vVD=5vVGS=0vVDS=4vVT=1v因为 V G S > V T V_{GS}>V_T VGS>VT,所以是导通状态; V D S > V G S − V T V_{DS}>V_{GS}-V_T VDS>VGSVT,所以是饱和区;
(d)p沟道增强型, V G = 2 v , V S = 5 v , V D = 4 v ; V G S = − 3 v , V D S = − 1 v , V T = − 1 v V_G=2v,V_S=5v,V_D=4v;V_{GS}=-3v,V_{DS}=-1v,V_T=-1v VG=2vVS=5vVD=4vVGS=3vVDS=1vVT=1v,因为 ∣ V G S ∣ > ∣ V T ∣ \left|V_{GS}\right|\gt \left|V_T\right| VGS>VT,所以是导通状态, ∣ V D S ∣ < ∣ V G S − V T ∣ \left|V_{DS}\right|\lt \left|V_{GS}-V_T\right| VDS<VGSVT,所以是线性区

题目四

如图所示, M 1 M_1 M1 M 2 M_2 M2两管串联,且 V B < V G − V T < V A V_B\lt V_G-V_T < V_A VB<VGVT<VA
请问:
(1) 若都是 NMOS,它们各工作在什么状态?
(2) 若都是 PMOS,它们各工作在什么状态?
(3) 证明两管串联的等效导电因子是 K e f f = K 1 K 2 K 1 + K 2 K_{eff}=\frac{K_1K_2}{K_1+K_2} Keff=K1+K2K1K2
在这里插入图片描述
答:
(1)设中间节点为C。对于该n沟道增强型, V T > 0 V_T\gt 0 VT>0。首先分析电路是否导通或者截止,其次分析是位于线性区还是饱和区;当 V c V_c Vc比较小的时候,电荷会聚集到C点,使 V c V_c Vc上升。当 V c V_c Vc上升到大于 V A V_A VA时, M 1 M_1 M1管截止, M 2 M_2 M2管会向下放电,使 V c V_c Vc下降。当 V c < V G − V T V_c\lt V_G-V_T Vc<VGVT时,电路处于稳态, M 1 M_1 M1管导通, V A − V C > V G − V C − V T V_A-V_C\gt V_G-V_C-V_T VAVC>VGVCVT,所以 M 1 M_1 M1处于饱和区;此时对于 M 2 M_2 M2而言, V G − V B > V T V_G-V_B\gt V_T VGVB>VT M 2 M_2 M2管导通, V C − V B < V G − V B − V T V_C-V_B\lt V_G-V_B-V_T VCVB<VGVBVT,所以 M 2 M_2 M2处于线性区。
(2)对于该p沟道增强型, V T < 0 V_T\lt 0 VT<0;首先分析电路是否导通或者截止,其次分析是位于线性区还是饱和区;当 V c V_c Vc比较高的时候,负电荷向C点聚集, V c V_c Vc下降;当 V c V_c Vc下降到小于 V B V_B VB时, M 2 M_2 M2管截止, M 1 M_1 M1管向下给 V c V_c Vc充电;当 V c > V G − V T V_c\gt V_G-V_T Vc>VGVT时,电路处于稳态, M 2 M_2 M2导通, V B − V C < V G − V T − V C V_B-V_C\lt V_G-V_T-V_C VBVC<VGVTVC,所以 M 2 M_2 M2处于饱和区;此时对于 M 1 M_1 M1而言, V G − V A < V T V_G-V_A\lt V_T VGVA<VT M 1 M_1 M1导通, V C − V A > V G − V A − V T V_C-V_A\gt V_G-V_A-V_T VCVA>VGVAVT,所以 M 1 M_1 M1处于线性区。
(3)此题以NMOS管为例,两个NMOS管等效为一个NMOS管后,根据 V B < V G − V T < V A V_B\lt V_G-V_T\lt V_A VB<VGVT<VA得,该等效管工作于饱和区。故有以下方程 I D 1 = K 1 ( V G − V T − V C ) 2 I_{D1}=K_1\left(V_G-V_T-V_C\right)^2 ID1=K1(VGVTVC)2
I D 2 = K 2 [ ( V G − V T − V B ) 2 − ( V G − V T − V C ) 2 ] I_{D2}=K_2\left[\left(V_G-V_T-V_B\right)^2-\left(V_G-V_T-V_C\right)^2\right] ID2=K2[(VGVTVB)2(VGVTVC)2]
I D e f f = K e f f ( V G − V T − V B ) 2 I_{Deff}=K_{eff}\left(V_G-V_T-V_B\right)^2 IDeff=Keff(VGVTVB)2
则有 I D 1 K 1 + I D 2 K 2 = I D e f f K e f f \frac{I_{D1}}{K_1}+\frac{I_{D2}}{K_2}=\frac{I_{Deff}}{K_{eff}} K1ID1+K2ID2=KeffIDeff,由 I D 1 = I D 2 = I D e f f I_{D1}=I_{D2}=I_{Deff} ID1=ID2=IDeff K e f f = K 1 K 2 K 1 + K 2 K_{eff}=\frac{K_1K_2}{K_1+K_2} Keff=K1+K2K1K2

题目五

标准 0.13 μ m 0.13\mu m 0.13μm CMOS 工艺,PMOS 管 W L = 0.4 μ m 0.2 μ m , t o x = 2.6 n m \frac{W}{L}=\frac{0.4\mu m}{0.2\mu m},t_{ox}=2.6nm LW=0.2μm0.4μmtox2.6nm,空穴迁移率 μ p = 80 c m 2 / V ⋅ s \mu_p=80cm^2/V·s μp=80cm2/Vs,阈值电压 V T = − 0.3 V V_T= -0.3V VT=0.3V,利用手算,对于 V G S = − 1.2 V , − 0.8 V , 0 V V_{GS}=-1.2V, -0.8V, 0V VGS=1.2V,0.8V,0V,分别画出 I D S I_{DS} IDS V D S V_{DS} VDS 的关系曲线。
答:

公式 I D = β [ ( V G S − V T ) V D S − 1 2 V D S 2 ] ( 线 性 区 ) I_D=\beta \left[\left(V_{GS}-V_T\right)V_{DS}-\frac{1}{2}V_{DS}^2\right](线性区) ID=β[(VGSVT)VDS21VDS2]线
I D = β 2 ( V G S − V T ) 2 ( 饱 和 区 ) I_D=\frac{\beta}{2}\left(V_{GS}-V_T\right)^2(饱和区) ID=2β(VGSVT)2
β = W L μ e f f C o x , C o x = ϵ 0 ϵ o x t o x \beta =\frac{W}{L}\mu_{eff}C_{ox},C_{ox}=\frac{\epsilon_0\epsilon_{ox}}{t_{ox}} β=LWμeffCox,Cox=toxϵ0ϵox
导电因子 β = μ n C o x W L = 80 × 3.9 × 8.85 × 1 0 − 14 2.6 × 1 0 − 7 ( W L ) = 106 ( W L ) ( μ A ⋅ V − 2 ) \beta =\mu_nC_{ox}\frac{W}{L}=80\times\frac{3.9\times8.85\times10^{-14}}{2.6\times10^{-7}}\left(\frac{W}{L}\right)=106\left(\frac{W}{L}\right)\left(\mu A·V^{-2}\right) β=μnCoxLW=80×2.6×1073.9×8.85×1014(LW)=106(LW)(μAV2)

对于该PMOS管,阈值电压 V T = − 0.3 V V_T= -0.3V VT=0.3V,利用手算,对于 V G S = − 1.2 v V_{GS}=-1.2v VGS=1.2v,由于 ∣ V G S ∣ > ∣ V T ∣ \left|V_{GS}\right|\gt \left|V_T\right| VGS>VT,所以处于导通状态。 V D S V_{DS} VDS的临界值为 V G S − V T = − 0.9 v V_{GS}-V_T=-0.9v VGSVT=0.9v,即 V D S ≤ − 0.9 v V_{DS}\le -0.9v VDS0.9v,则处于饱和区, − 0.9 v < V D S ≤ 0 -0.9v\lt V_{DS}\le 0 0.9v<VDS0则处于线性区。处于线性区时, I D = β [ ( V G S − V T ) V D S − 1 2 V D S 2 ] = 106 × 2 ( − 0.9 V D S − 1 2 V D S 2 ) I_D=\beta \left[\left(V_{GS}-V_T\right)V_{DS}-\frac{1}{2}V_{DS}^2\right]=106\times2\left(-0.9V_{DS}-\frac{1}{2}V_{DS}^2\right) ID=β[(VGSVT)VDS21VDS2]=106×2(0.9VDS21VDS2);处于饱和区时, I D = β 2 ( V G S − V T ) 2 = 106 × ( − 0.9 ) 2 = 85.86 I_D=\frac{\beta}{2}\left(V_{GS}-V_T\right)^2=106\times\left(-0.9\right)^2=85.86 ID=2β(VGSVT)2=106×(0.9)2=85.86

对于 V G S = − 0.8 v V_{GS}=-0.8v VGS=0.8v,由于 ∣ V G S ∣ > ∣ V T ∣ \left|V_{GS}\right|\gt\left|VT\right| VGS>VT,所以处于导通状态。 V D S V_{DS} VDS的临界值为 V G S − V T = − 0.5 v V_{GS}-V_T=-0.5v VGSVT=0.5v,即 V D S ≤ − 0.5 v V_{DS}\le-0.5v VDS0.5v则处于饱和区, − 0.5 v < V D S ≤ 0 -0.5v\lt V_{DS}\le 0 0.5v<VDS0则处于线性区。处于线性区时, I D = β [ ( V G S − V T ) V D S − 1 2 V D S 2 ] = 106 × 2 ( − 0.5 V D S − 1 2 V D S 2 ) I_D=\beta \left[\left(V_{GS}-V_T\right)V_{DS}-\frac{1}{2}V_{DS}^2\right]=106\times2\left(-0.5V_{DS}-\frac{1}{2}V_{DS}^2\right) ID=β[(VGSVT)VDS21VDS2]=106×2(0.5VDS21VDS2);处于饱和区时, I D = β 2 ( V G S − V T ) 2 = 106 × ( − 0.5 ) 2 = 26.5 I_D=\frac{\beta}{2}\left(V_{GS}-V_T\right)^2=106\times\left(-0.5\right)^2=26.5 ID=2β(VGSVT)2=106×(0.5)2=26.5

对于 V G S = 0 v V_{GS}=0v VGS=0v,由于 ∣ V G S ∣ < ∣ V T ∣ \left|V_{GS}\right|\lt \left|VT\right| VGS<VT,所以处于截止状态。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值