由幂级数来定义的函数,其自然定义域是幂级数的收敛域,而不是和函数本身的自然定义域。
然后就是注意端点,取等的两个条件一定要尽量满足。
幂级数的收敛域就是和函数的收敛域;函数端点值的定义不需要重新判断。 但是幂级数求导积分收敛域可能会改变,函数端点定义需要重新判定。 例如s(x)=1+x+x^2+...,很显然s(x)的收敛域是|x|<1,收敛到1/(1-x);对两边同时积分有t(x)=x+x^2/2+x^3/3+...,这里t(x)是s(x)的积分也就是-ln(1-x),这里面很容易验证t(x)在-1处也是有定义的,即,t(x)的收敛域是[-1,1).之所以这里面会有定义域的改变是因为涉及到积分和求和顺序能否交换的问题,在收敛域内部这个求和是一致收敛的,所以没有问题,但边界处就可能不是一致收敛的,只能代进去验证。