首先来看看伯努利方程长什么样。
式1
n!=0,1.
emmm.看起来也就是比一阶线性非齐次方程多了个yn 。
书上说当n!=0,1的时候,这个方程就不是线性的了。但是可以通过变量代换,把它转换为线性的。让我们来看看这是怎么完成的吧!
首先来看看式1两端分别除yn 会得出什么:
式2
可以看到它与一阶线性非齐次微分方程有点像,来,让我们做个变量代换:
z=y1-n (式3)。对式3两边求导有:
式4
若是在式2两边同时乘以1-n,并把式4代入式2则有如下等式:
式5
啊哈,看看我们得到了什么,一个一阶线性非齐次微分方程,现在我们知道它的解等于它所对应的齐次方程的通解,加上它的一个特解,便组成了它的通解。
nice。
待续。。
有趣的微分方程之伯努利方程
最新推荐文章于 2024-12-23 08:43:09 发布