有趣的微分方程之伯努利方程

首先来看看伯努利方程长什么样。
式1
在这里插入图片描述
n!=0,1.
emmm.看起来也就是比一阶线性非齐次方程多了个yn
书上说当n!=0,1的时候,这个方程就不是线性的了。但是可以通过变量代换,把它转换为线性的。让我们来看看这是怎么完成的吧!
首先来看看式1两端分别除yn 会得出什么:
式2
在这里插入图片描述
可以看到它与一阶线性非齐次微分方程有点像,来,让我们做个变量代换:
z=y1-n (式3)。对式3两边求导有:
式4
在这里插入图片描述
若是在式2两边同时乘以1-n,并把式4代入式2则有如下等式:
式5
在这里插入图片描述
啊哈,看看我们得到了什么,一个一阶线性非齐次微分方程,现在我们知道它的解等于它所对应的齐次方程的通解,加上它的一个特解,便组成了它的通解。
nice。
待续。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值