图像法与伯努利方法的联系(自治微分方程)

 

图像法与伯努利方法的联系(自治微分方程)
先假设有如下简单的微分方程y'=k*y (其中k为常量)
采用图像法可以解得:
当y=0的时候,它的方向场为0,可以发现它是一条渐进线,是不可接近的;
当y>0时,y'=k*y>0,并且随着y的增大而增大,从而可以看出它的上半部分的图像的曲率是不断增大的,当然可能是指数曲线也有可能是其它的凸图像;
当y<0时,y'=k*y<0,并且随着y的增大而减小,从而可以看出它的下半部分的图像的曲率是不断减小的,当然可能是指数曲线也有可能是其它的凹图像;
下面采用标准解法从代数的角度看:
d(y)/d(x)=k*y
Go
d(y)/y=k*d(x)
Go
In | y|=k*x+c
GO
|y|=C*e^(k*x)
从这里可以看出图像是关于x轴对称的,并且是指数增长趋势的,与图像法的分析是一致的;


现在将上面的思维做下延伸,假定微分方程形式为y'=k*y-m (其中k,m为常量)
同样的采用图像法发现只是渐进线移动到y=m/k这条线上,其他图像的走势都没有变化;
下面采用标准解法从代数的角度看:
d(y)/d(x)=k*y-m
Go
d(y)/d(x)=k*(y-m/k)
Go
d(y)/(y-m/k)=k*d(x)
Go
In | (y-m/k)|=k*x+c
GO
|(y-m/k)|=C*e^(k*x)
从而可以发现两者还是相同的结果;


现在将上面的思维继续延伸,假定微分方程形式为y'=k*y (其中k为变量k=(g-m*y),其中g,m为常量,并且为正数),即有y'=(g-m*y)*y
Go
y'=g*y-m*y^2
先采用图像法分析它的解:假定y'=0,那么y=0或者y=g/m,显然这是两条渐进线。分析当y<0的时候,y'<0,并且y越小,y'越小,所以图像是凹的,并且曲率值越来越小,渐进线是y=0;分析当y>0的时候,y'<0,并且y越大,y'越小,所以图像是凹的,并且曲率值越来越小,渐进线是y=g/m;
而当0<y<g/m时,y'的值总是正的,只是先变大再变小,所以它的图像是凸的,只是前半部分凸得厉害些,后半部分缓和些;即向上凸和向下凸;中间分割点是y=g/(2m);
下面采用代数法也就是伯努利方法来解这个方程:
方程两边除以y^2
Go
y'/y^2=g/y-m
Go
y'/y^2-g/y=-m
GO
设置v=1/y,则有v'=-y'/y^2
-v'-g*v=-m
Go
有上面的推导有:
v=m/g(+-)*e^(-g*x)
GO
y=1/v=1/{m/g(+-)e^(-g*x)}
下面分两种情况:
y=1/{m/g+e^(-g*x)}
当x从-无穷大变为无穷大的过程中,e^(-g*x)从无穷大变为0,那么y由0变为g/m,对应于图像法中的中间部分;
如果y=1/{m/g-e^(-g*x)}
当x从-无穷大变为无穷大的过程中,因为中间有个隔断,比如e^(-g*x)不能为m/g,所以从e^(-g*x)的角度分为两部分:是从无穷大变为m/g和从m/g变为0;
所以从-e^(-g*x)的角度分为两部分:是从-无穷大变为-m/g和从-m/g变为-0;
所以从m/g-e^(-g*x)的角度分为两部分:是从-无穷大变为-0和从+0变为m/g;
那么y=1/{m/g-e^(-g*x)}的角度分为两部分:是从-0变为-无穷大和从+无穷大变为g/m;
y的这两部分分别对应于图像法中的上下两部分;
问题得到解决;

应用
现在将上面的思维继续延伸,考虑收割的问题,这时的微分方程形式为:y'=g*y-m*y^2-k  (其中g,m,k为常量,并且为正数)
考虑的问题是当k取什么样的值时候,从g*y-m*y^2-k二次方程函数图像的角度,如果二次方程与x轴没有交点的话,那么y'全小于0,这样y的值将是逐步下降的,没有渐进线;虽然其中有个图像的拐点;
如果要求有渐进线,一条或者两条,必须满足与x轴有交点,这就是k需要满足的条件;
这个题目如果从代数的角度看将会很复杂;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值