4. 一阶线性微分方程

4. 一阶线性微分方程

4.1 线性方程

4.1.1 基本概念

对于方程 d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)(这是一个一阶线性微分方程)

(这个方程对于未知函数y及其导数是 一次方程

Q ( x ) ≡ 0 Q(x) \equiv 0 Q(x)0 时,此方程为 齐次方程

Q ( x ) Q(x) Q(x) 不恒为0时,此方程为 非齐次方程

4.1.2 如何解此类方程?
4.1.2.1 齐次的情况

此时方程为 d y d x + P ( x ) y = 0 \frac{dy}{dx}+P(x)y=0 dxdy+P(x)y=0,显然这时候方程是一个可分离变量的方程。

我们分离变量得到 d y y = − P ( x ) d x \frac{dy}{y}=-P(x)dx ydy=P(x)dx

对两端积分得到 ln ⁡ ∣ y ∣ = − ∫ P ( x )   d x + C \ln|y|=-\int P(x) \ dx +C lny=P(x) dx+C

变成左端只剩 y 的样子就是 y = C e − ∫ P ( x )   d x y = C e^{-\int P(x) \ dx} y=CeP(x) dx(这里动手试一下,是可以化成这种样子的)

此时得到的 y = C e − ∫ P ( x )   d x y=Ce^{-\int P(x) \ dx} y=CeP(x) dx 就是方程 d y d x + P ( x ) y = 0 \frac{dy}{dx}+P(x)y=0 dxdy+P(x)y=0 的通解

4.1.2.2 非齐次的情况

此时我们要求解的式子是 d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)

为了简洁,我们将式子写成这个样子 y ′ + p y = q y^{'}+py=q y+py=q

不难发现,左侧式子类似于乘法求导公式,只不过是少了一个因子。

不妨两端同乘一个 u(x) ,(这里同样为了简便写成 u ),即 u y ′ + p u y = q uy^{'}+puy=q uy+puy=q

又因为 ( y u ) ′ = y ′ u + u ′ y (yu)'=y^{'}u+u^{'}y (yu)=yu+uy

此时只需要找到一个 u ′ u^{'} u 使之等价于 p u pu pu,即得解。

此时解 u ′ = p u u^{'}=pu u=pu

d u u = P ( x )   d x \frac{du}{u}=P(x)\ dx udu=P(x) dx

由上面讨论的齐次情况,我们可以得到 u = e ∫ P ( x )   d x u=e^{\int P(x) \ dx} u=eP(x) dx

此时 u y = ∫ q u + C uy=\int qu+C uy=qu+C

那么就得到 y = ∫ q u   +   C u y=\frac{\int qu \ + \ C}{u} y=uqu + C

同济版高等数学上的“常数变易法”是这样的:将齐次方程的通解 y = C e − ∫ P ( x )   d x y=Ce^{-\int P(x) \ dx} y=CeP(x) dx 中的 C 换成关于 x 的未知函数 u(x) ,作变换 y = u e − ∫ P ( x )   d x y=u e^{-\int P(x)\ dx} y=ueP(x) dx

4.2 伯努利方程

4.2.1 基本概念

对于方程 d y d x + P ( x ) y = Q ( x ) y n \frac{dy}{dx}+P(x)y = Q(x)y^n dxdy+P(x)y=Q(x)yn ( n ≠ 0 , 1 ) (n \neq 0,1) (n=0,1)

①当 n = 0 n=0 n=0 1 1 1 的时候,方程为线性微分方程

②当 n ≠ 0 , 1 n \neq 0,1 n=0,1 的时,方程显然不为线性,但是可以通过变量代换将其变换为线性的。

4.2.2 如何解?

d y d x + P ( x ) y = Q ( x ) y n \frac{dy}{dx}+P(x)y = Q(x)y^n dxdy+P(x)y=Q(x)yn ( n ≠ 0 , 1 ) (n \neq 0,1) (n=0,1)

方程两端同时除以 y n y^n yn

d y d x ⋅ y − n + P ( x ) y 1 − n = Q ( x ) \frac{dy}{dx}\cdot y^{-n}+P(x)y^{1-n}=Q(x) dxdyyn+P(x)y1n=Q(x)

z = y 1 − n z=y^{1-n} z=y1n ,且 d z d x = ( 1 − n ) y − n ⋅ d y d x \frac{dz}{dx}=(1-n)y^{-n} \cdot \frac{dy}{dx} dxdz=(1n)yndxdy

那么此时原方程变为 d z d x + ( 1 − n ) P ( x ) ⋅ z = ( 1 − n ) Q ( x ) \frac{dz}{dx}+(1-n)P(x)\cdot z = (1-n)Q(x) dxdz+(1n)P(x)z=(1n)Q(x)

此时解这个线性方程得到解之后,再用 z = y 1 − n z=y^{1-n} z=y1n 反代就得到了方程的通解。

4.3 例题

1. 求方程 d y d x − 2 y x + 1 = ( x + 1 ) 5 2 \frac{dy}{dx}-\frac{2y}{x+1}=(x+1)^{\frac{5}{2}} dxdyx+12y=(x+1)25 的通解

运用上面得到的解法, P ( x ) = − 2 x + 1 P(x) = -\frac{2}{x+1} P(x)=x+12

那么 u = e ∫ P ( x )   d x = e − ∫ 2 x + 1   d x = ( x + 1 ) − 2 u=e^{\int P(x) \ dx}=e^{-\int\frac{2}{x+1}\ dx}=(x+1)^{-2} u=eP(x) dx=ex+12 dx=(x+1)2

y = ∫ q u + C u = ∫ ( x + 1 ) 5 2 ⋅   ( x + 1 ) − 2   d x + C ( x + 1 ) − 2 = ( x + 1 ) 2 [ ∫ ( x + 1 ) 1 2   d x + C ] = ( x + 1 ) 2 [ 2 3 ( x + 1 ) 3 2 + C ] y=\frac{\int qu+C}{u}\\ =\frac{\int(x+1)^{\frac{5}{2}}\cdot \ (x+1)^{-2}\ dx+C}{(x+1)^{-2}}\\ =(x+1)^2[\int(x+1)^{\frac{1}{2}}\ dx+C]\\ =(x+1)^2[\frac{2}{3}(x+1)^{\frac{3}{2}}+C] y=uqu+C=(x+1)2(x+1)25 (x+1)2 dx+C=(x+1)2[(x+1)21 dx+C]=(x+1)2[32(x+1)23+C]

2. 解方程 d y d x = 1 x + y \frac{dy}{dx}=\frac{1}{x+y} dxdy=x+y1

此时令 u = x + y u=x+y u=x+y ,那么

d u d x = d y d x + 1 \frac{du}{dx}=\frac{dy}{dx}+1 dxdu=dxdy+1

d u d x = 1 u + 1 \frac{du}{dx}=\frac{1}{u}+1 dxdu=u1+1

分离变量就得到 u u + 1   d u = d x \frac{u}{u+1}\ du=dx u+1u du=dx

两端同时积分得到 u − ln ⁡ ∣ u + 1 ∣ = x + C u-\ln|u+1|=x+C ulnu+1∣=x+C

此时反代 u = x + y u=x+y u=x+y 得到通解。

3. 求方程 d y d x + y x = a l n x ⋅ y 2 \frac{dy}{dx}+\frac{y}{x}=alnx \cdot y^2 dxdy+xy=alnxy2 的通解

方程两端同除 y 2 y^2 y2,方程变为 d y d x ⋅ 1 y 2 + 1 x y = a l n x \frac{dy}{dx}\cdot\frac{1}{y^2}+\frac{1}{xy}=alnx dxdyy21+xy1=alnx

此时令 z = 1 y z=\frac{1}{y} z=y1 ,则 d z d x = − 1 y 2 ⋅ d y d x \frac{dz}{dx}= - \frac{1}{y^2} \cdot \frac{dy}{dx} dxdz=y21dxdy

代回原式就有 d z d x − z x = − a l n x \frac{dz}{dx}-\frac{z}{x}=-alnx dxdzxz=alnx

此时解此一阶线性微分方程即可。

u = e ∫ − 1 x   d x = 1 x z = ∫ a l n x ⋅ 1 x   d x + C 1 x   = x [ C − a 2 ( l n x ) 2 ] u=e^{\int - \frac{1}{x} \ dx} = \frac{1}{x} \\ z= \frac{\int alnx \cdot \frac{1}{x} \ dx+C}{\frac{1}{x}}\ =x[C-\frac{a}{2}(lnx)^2] u=ex1 dx=x1z=x1alnxx1 dx+C =x[C2a(lnx)2]

z = 1 y z=\frac{1}{y} z=y1 ,再反代即得解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值