有趣的微分方程之高阶线性微分方程

这类微分方程在实际生活中应用是比较多的。
比如弹簧阻尼系统的振动方程,LC振荡电路等。


先来介绍二阶微分方程

1,二阶线性微分方程

形如下面形式的微分方程叫做二阶线性微分方程:
在这里插入图片描述
若f(x)=0,称其为齐次的,否则是非齐次的。
先来看二阶微分方程解的一些性质,我们可以把这些性质推广到n阶(至少先人已经做到了)。


对于此方程:
方程1
在这里插入图片描述

1.1如果y1(x)和y2(x)是方程的解,那么y=C1y1(x)+C2y2(x)也是其解。

y=C1y1(x)+C2y2(x)可能是方程1的通解,也可能不是。(为什么?)
那什么时候y=C1y1(x)+C2y2(x)是方程1的通解呢?让我们先来了解一下先人提出的一个概念:函数组的线性相关和线性无关


函数组的线性相关和线性无关

在这里插入图片描述
yn是定义在区间I上的函数。若存在一组不全为0的k1,k2,kn使上式成立,则称y1,y2线性相关。否则就是线性不相关。
对于线性相关或不相关,一个比较好的理解方式就是转化为坐标系中的向量来理解,向量起点在原点:

二维向量不相关就是不共线,三维向量不相关就是不共面


如此可有以下定理:

如果y1(x)和y2(x)是方程1的两个线性不相关的解那么y=C1y1(x)+C2y2(x)就是方程1的通解。

这个定理可以推广到n阶微分方程,你知道怎么推吗?


二阶非齐次微分方程的通解就等于其一个特解(随便求出来的一个解)加上其对应的齐次微分方程的通解。


线性微分方程满足叠加定理

对于下列方程:
在这里插入图片描述
如果y1(x)是下列方程的一个特解:
在这里插入图片描述
y2(x)是下列方程的一个特解:
在这里插入图片描述
那么y1(x)+y2(x)就是
在这里插入图片描述
的一个特解。这个可以推广到n阶,你知道怎么推吗?


待续。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值