MFEA-II--自适应迁移概率的MFEA

本文提出MFEA-II,一种改进的多任务进化算法,通过在线学习自适应迁移概率矩阵来优化任务间的知识迁移。理论证明了多任务优化在任务互补情况下收敛更快,且MFEA的收敛速度与迁移参数紧密相关。然而,实验证明MFEA-II计算成本高,需进一步研究高效自适应策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MFEA-II–自适应迁移概率的MFEA

title:Multifactorial Evolutionary Algorithm With Online Transfer Parameter Estimation: MFEA-II

author:Kavitesh Kumar Bali , Yew-Soon Ong, Abhishek Gupta , and Puay Siew Tan

journal:IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION(TEVC)

DOI: https://doi.org/10.1109/TEVC.2019.2906927

code:https://github.com/intLyc/MTO-Platform/tree/master/MTO/Algorithms/Multi-task/Multi-factorial/MFEA-II

1.主要贡献:

1)从理论上证明了当任务之间存在互补性(或相似性)的条件下,多任务优化比单任务优化能产生更快的收敛特性,并且MFEA的收敛速率与迁移参数(rmp)有很大的相关性;2)提出了MFEA-II来估计rmp。

2.问题提出:

研究表明,多任务优化的性能对潜在的任务间相似程度很敏感,也就是说MFEA的性能与rmp的设置有关,而MFEA中的rmp需要人为设置。

3.理论证明:

该文章的3-4章通过理论证明得出结论:1)当任务之间存在互补性(或相似性)的条件下,多任务优化比单任务优化能产生更快的收敛特性;2)MFEA的收敛速率与迁移参数(rmp)有很大的相关性。

此处不展示详细的证明过程,有需要的话可以参考原文!!!

4.MFEA-II:

1)MFEA-II不再使用MFEA中的标量rmp来控制迁移频率,而是一个 K × K K\times K K×K的矩阵RMP,表示如下:
R M P = [ r m p 1 , 1 r m p 1 , 2 . . r m p 2 , 1 r m p 2 , 2 . . . . . . . . . . ] RMP=\begin{bmatrix} rmp_{1,1} & rmp_{1,2} & . & .\\ rmp_{2,1} & rmp_{2,2}& . & . \\ . & . & .&. \\. & . & .&.\end{bmatrix} RMP= rmp1,1<

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tiger-woods

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值