MFEA-II–自适应迁移概率的MFEA
title:Multifactorial Evolutionary Algorithm With Online Transfer Parameter Estimation: MFEA-II
author:Kavitesh Kumar Bali , Yew-Soon Ong, Abhishek Gupta , and Puay Siew Tan
journal:IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION(TEVC)
DOI: https://doi.org/10.1109/TEVC.2019.2906927
code:https://github.com/intLyc/MTO-Platform/tree/master/MTO/Algorithms/Multi-task/Multi-factorial/MFEA-II
1.主要贡献:
1)从理论上证明了当任务之间存在互补性(或相似性)的条件下,多任务优化比单任务优化能产生更快的收敛特性,并且MFEA的收敛速率与迁移参数(rmp)有很大的相关性;2)提出了MFEA-II来估计rmp。
2.问题提出:
研究表明,多任务优化的性能对潜在的任务间相似程度很敏感,也就是说MFEA的性能与rmp的设置有关,而MFEA中的rmp需要人为设置。
3.理论证明:
该文章的3-4章通过理论证明得出结论:1)当任务之间存在互补性(或相似性)的条件下,多任务优化比单任务优化能产生更快的收敛特性;2)MFEA的收敛速率与迁移参数(rmp)有很大的相关性。
此处不展示详细的证明过程,有需要的话可以参考原文!!!
4.MFEA-II:
1)MFEA-II不再使用MFEA中的标量rmp来控制迁移频率,而是一个 K × K K\times K K×K的矩阵RMP,表示如下:
R M P = [ r m p 1 , 1 r m p 1 , 2 . . r m p 2 , 1 r m p 2 , 2 . . . . . . . . . . ] RMP=\begin{bmatrix} rmp_{1,1} & rmp_{1,2} & . & .\\ rmp_{2,1} & rmp_{2,2}& . & . \\ . & . & .&. \\. & . & .&.\end{bmatrix} RMP=
rmp1,1<