EMTO-HKT–混合知识迁移策略
title:Evolutionary multi-task optimization with hybrid knowledge transfer strategy
author:Yiqiao Cai, Deming Peng, Peizhong Liu, Jing-Ming Guo
journal:Information Sciences(INS)
code:
1.主要贡献:
1)设计了一种基于种群分布的度量(PDM)技术来评估任务之间的相似性。
2)引入了一种多知识迁移(MKT)机制来实现跨任务知识迁移。
3)结合PDM和MKT,提出了混合知识迁移策略(HKT)。
与MFEA相比,EMTO-HKT的特点是使用HKT策略,基于任务间的相关性,自适应地控制任务间的知识转移强度。
2.问题提出:
1)具有不同程度相似性的任务的迁移强度的控制。
2)任务相似性的度量应该动态地考虑分布相似性和最优解的交集。
3)不同的知识转移策略在共享和利用有用知识方面表现出不同的能力。
3.EMTO-HKT:
1)算法框架:
EMTO-HKT是一个多种群的MTO算法框架。
首先,为每个任务初始化一个具有N个个体的种群并进行评估。其次,并为每个任务构建PDM技术所使用的精英集(第4行)。初始化过程结束后,将具有两级学习算子的MKT机制迭代地应用于每个任务,直到满足终端条件。
PDM包括相似性度量和交集度量。
两级学习算子包括个体水平的迁移学习(9-25行)和种群水平的迁移学习(26-30行)。


2)PDM:
首先,选择每个任务 T k T_k Tk的m个最优解,根据它们的适应度值构建一个精英集,表示为 E k E_k Ek。其次,对于每个任务构建的精英集,PDM技术的两个度量定义如下:
**相似度度量:**具体来说,对于每个目标任务 T k T_k Tk,计算从 E k E_k Ek中所有解到 T k T_k Tk的最优解(即 x → k , b g \overrightarrow x^g_{k,b} xk,bg)的欧氏距离,并按升序排序,并将 x → i g ∈ E k \overrightarrow x^g_i \in E_k xig∈Ek到 x → l , b g \overrightarrow x^g_{l,b} xl,bg的距离排序表示为 R d k , i ( l ) Rd^{(l)}_{k,i} Rdk,i(l)。然后,通过下面的公式评估辅助任务( T l T_l Tl)与 T k T_k Tk的相似性(记为 S M k ( l ) SM^{(l)}_k SMk(l))
S M k ( l ) = ∑ i = 1 m ∣ R f k , i − R d k , i ( k ) ∣ ∑ i = 1 m ∣ R f k , i − R d k , i ( l ) ∣ SM^{(l)}_k=\frac{\sum^m_{i=1}|Rf_{k,i}-Rd^{(k)}_{k,i}|}{\sum^m_{i=1}|Rf_{k,i}-Rd^{(l)}_{k,i}|} SMk(l)=∑i=1m∣Rfk,i−Rdk,i(l)∣∑i=1m∣Rfk,i−Rdk,i(k)∣
其中 R f k , i Rf_{k,i} Rfk,i是 x → i g ∈ E k , i = 1 , 2 , . . . , m \overrightarrow x^g_i \in E_k,i=1,2,...,m xig∈E