EMTO-HKT--带有混合知识迁移策略的多任务优化算法

EMTO-HKT–混合知识迁移策略

title:Evolutionary multi-task optimization with hybrid knowledge transfer strategy

author:Yiqiao Cai, Deming Peng, Peizhong Liu, Jing-Ming Guo

journal:Information Sciences(INS)

DOI10.1016/j.ins.2021.09.021

code:

1.主要贡献:

1)设计了一种基于种群分布的度量(PDM)技术来评估任务之间的相似性

2)引入了一种多知识迁移(MKT)机制来实现跨任务知识迁移。

3)结合PDM和MKT,提出了混合知识迁移策略(HKT)。

与MFEA相比,EMTO-HKT的特点是使用HKT策略,基于任务间的相关性,自适应地控制任务间的知识转移强度

2.问题提出:

1)具有不同程度相似性的任务的迁移强度的控制。

2)任务相似性的度量应该动态地考虑分布相似性和最优解的交集。

3)不同的知识转移策略在共享和利用有用知识方面表现出不同的能力。

3.EMTO-HKT:

1)算法框架

​ EMTO-HKT是一个多种群的MTO算法框架。

​ 首先,为每个任务初始化一个具有N个个体的种群并进行评估。其次,并为每个任务构建PDM技术所使用的精英集(第4行)。初始化过程结束后,将具有两级学习算子的MKT机制迭代地应用于每个任务,直到满足终端条件。

​ PDM包括相似性度量和交集度量。

​ 两级学习算子包括个体水平的迁移学习(9-25行)和种群水平的迁移学习(26-30行)。

image-20240317144527357 image-20240317144552392

2)PDM:

​ 首先,选择每个任务 T k T_k Tk的m个最优解,根据它们的适应度值构建一个精英集,表示为 E k E_k Ek。其次,对于每个任务构建的精英集,PDM技术的两个度量定义如下:

​ **相似度度量:**具体来说,对于每个目标任务 T k T_k Tk,计算从 E k E_k Ek中所有解到 T k T_k Tk的最优解(即 x → k , b g \overrightarrow x^g_{k,b} x k,bg)的欧氏距离,并按升序排序,并将 x → i g ∈ E k \overrightarrow x^g_i \in E_k x igEk x → l , b g \overrightarrow x^g_{l,b} x l,bg的距离排序表示为 R d k , i ( l ) Rd^{(l)}_{k,i} Rdk,i(l)。然后,通过下面的公式评估辅助任务( T l T_l Tl)与 T k T_k Tk的相似性(记为 S M k ( l ) SM^{(l)}_k SMk(l)
S M k ( l ) = ∑ i = 1 m ∣ R f k , i − R d k , i ( k ) ∣ ∑ i = 1 m ∣ R f k , i − R d k , i ( l ) ∣ SM^{(l)}_k=\frac{\sum^m_{i=1}|Rf_{k,i}-Rd^{(k)}_{k,i}|}{\sum^m_{i=1}|Rf_{k,i}-Rd^{(l)}_{k,i}|} SMk(l)=i=1mRfk,iRdk,i(l)i=1mRfk,iRdk,i(k)
其中 R f k , i Rf_{k,i} Rfk,i x → i g ∈ E k , i = 1 , 2 , . . . , m \overrightarrow x^g_i \in E_k,i=1,2,...,m x igE

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tiger-woods

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值