MTEA-AD--通过异常检测模型来解决Many多任务优化问题

MTEA-AD–通过异常检测模型来解决Many多任务优化问题

title:Solving Multitask Optimization Problems With Adaptive Knowledge Transfer via Anomaly Detection

author:Chao Wang , Jing Liu, Kai Wu, and Zhaoyang Wu.

journal:IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION(TEVC)

DOI10.1109/TEVC.2021.3068157

code:https://github.com/intLyc/MTO-Platform/tree/master/MTO/Algorithms/Multi-task/Multi-population/MTEA-AD

1.主要贡献:

1)利用在线学习的异常检测模型来自适应地识别有效的知识(个体)。

2)利用成功转移个体的比例,自适应地更新下一个异常检测过程的参数。

2.问题提出:

两个任务在搜索过程中可能具有相似的种群分布特征,而如何在这些类似分布的群体中使用个体也是解决负迁移的一个关键问题。为此,本文提出了使用异常检测模型来学习任务之间的个体关系。

3.MTEA-AD:

1)异常检测模型

基于多元高斯分布的异常检测模型描述如下.

首先,拟合一个统计模型 p ( x ) p(x) p(x):
μ = 1 m ∑ i = 1 m x ( i ) Σ = 1 m ∑ i = 1 m ( x ( i ) − μ ) ( x ( i ) − μ ) T \mu = \frac1m \sum^m_{i=1} x^{(i)} \\\Sigma = \frac1m \sum^m_{i=1} (x^{(i)}-\mu)(x^{(i)}-\mu)^T μ=m1i=1mx(i)Σ=m1i=1m(x(i)μ)(x(i)μ)T
然后,给定一个新样本x,则
p ( x ∣ μ , Σ ) = 1 ( 2 π ) n 2 ∣ Σ ∣ 1 2 × e x p ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) p(x|\mu, \Sigma) =\frac 1 {(2π) \frac n2 |\Sigma |^{\frac 1 2}} × exp\bigg(−\frac12(x − \mu)^T\Sigma^{-1} (x − \mu)\bigg) p(xμ,Σ)=(2π)2n∣Σ211×exp(21(xμ)TΣ1(xμ))
其中, ∣ Σ ∣ |\Sigma| ∣Σ∣是矩阵 Σ \Sigma Σ的行列式。最后,判断样本x是否为异常值:
p ( x ) { < ϵ , a n o m a l y > = ϵ , n o r m a l p(x)\begin{cases}< \epsilon, anomaly\\>= \epsilon, normal \end{cases} p(x){<ϵ,anomaly>=ϵ,normal

image-20240311150330067

2)基于异常检测模型的迁移个体选择:

​ 包括两个主要步骤。

​ 学习异常检测模型:将当前种群P中的所有个体作为训练数据,计算多元高斯分布的均值 μ \mu μ和协方差 Σ \Sigma Σ

​ 选择候选转移个体:将所有其他任务中的个体作为检测样本,计算的 p ( x ∣ μ , Σ ) p(x|μ,\Sigma) p(xμ,Σ)值,前 ϵ × N × ( K − 1 ) \epsilon×N×(K−1) ϵ×N×(K1)个个体选择作为知识转移的载体,其中 ϵ , N , K \epsilon,N,K ϵ,N,K分别表示异常检测模型的参数,每个任务的种群规模和任务的数量。

image-20240311104739330

3)基于精英的参数自适应

​ 异常检测模型的参数 ϵ \epsilon ϵ应进行动态调整,以控制知识转移的程度。较小的 ϵ \epsilon ϵ会降低常识利用率,而较大的 ϵ \epsilon ϵ导致计算资源的浪费。
ϵ i = s i m i \epsilon_i = \frac{s_i} {m_i} ϵi=misi
其中, s i s_i si为从任务 T i T_i Ti中成功选择的个体的数量, m i m_i mi为任务 T i T_i Ti的候选转移个体的数量。因此, ε i ε_i εi可以反映在所提出的异常检测模型中的知识转移的有效性。

​ 首先,通过精英选择策略从候选迁移个体,父代种群,子代种群中选择前N个个体作为下一代;其次,根据上述公式更新参数 ε i ε_i εi

image-20240311104922558

4)算法框架与实现

​ 首先,为每个任务都设置一个种群。其次,在主循环中,先通过交叉变异产生子代;然后,当知识迁移发生时,根据算法1选择迁移个体,根据算法2选择下一代种群并更新参数 ϵ \epsilon ϵ;否则,就使用精英选择策略选择下一代种群。最后,返回每个任务的最优解。其中,迁移概率是通过 α \alpha α控制的。

image-20240311105003055

4.思考

1)在多任务优化中的异构问题:最优解距离较远,决策变量维度不一致等。AT-MFEA–解决异构多任务优化问题-CSDN博客MTGA–采用偏差估计策略的多任务优化算法(附平台代码)-CSDN博客G-MFEA–构建多任务优化框架解决昂贵优化问题-CSDN博客

2)迁移频率:本文的迁移概率是固定的。MFEA-II–自适应迁移概率的MFEA-CSDN博客SREMTO–自调节进化多任务优化-CSDN博客

3)本文的异常检测模型是多元高斯模型,可以分析使用不同的异常检测模型对算法性能的影响。

4)当两个任务的最优解距离较远时,直接采用异常检测模型可能得不到好的效果,特别是在迭代的后期,它们的解分别都趋近于各自的最优解,且相距较远。

  • 27
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tiger-woods

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值