Load LoRA 节点用于加载并应用 LoRA(Low-Rank Adaptation)模型,以增强基础模型(Base Model)的能力。通过调整 LoRA 模型的影响力,可以实现对图像生成风格和内容的精细控制。
你可以把它理解为:搭配基础模型一起使用,临时给基础模型加一段专门学会某种风格或角色的记忆。
Load Checkpoint │ │ ▼ ▼ Load LoRA(可串联多个) │ │ ▼ ▼ KSampler CLIP Text Encode
此节点将 LoRA 模型作用于基础模型的潜图生成模块(UNet)和文本编码器(CLIP),从而影响生成图像的结构与风格。
📌 端口与参数
📌 输入端口
🟣 model
基础模型
基础扩散模型输入,通常来自 Load Checkpoint 节点。
🟡 clip
CLIP 编码器
CLIP 编码器输入,通常也来自 Load Checkpoint 节点。
📌 参数
lora_name
LoRA 模型文件名
选择要加载的 LoRA 模型名称。
LoRA 模型位于 ComfyUI/models/lora/ 目录下,格式为 .safetensors 文件。
示例:2025autumn.safetensorsaesthetic_film.safetensors
strength_model
模型融合度
控制 LoRA 对基础模型的潜图生成模块(Unet)的影响程度。
范围一般为 0 ~ 1。
1.0 → 完全启用 LoRA 效果(推荐默认)。< 1.0 → 部分融合,更柔和。0 → 不影响基础模型,仅影响文本理解(如配合多个 LoRA 或测试时使用)。
strength_clip
文本编码融合度
控制 LoRA 对基础模型的文本编码器(CLIP)的影响程度。即,影响对提示词的解读方式。
提示:
大多数的 LoRA 建议两个强度保持一致。
个别写实/姿态类 LoRA 可设为:strength_model = 1.0strength_clip = 0.6
📌 输出端口
🟣 MODEL
套用 LoRA 后的模型
输出套用 LoRA 后的模型,可传入 KSampler 等采样节点。
🟡 CLIP
套用 LoRA 后的 CLIP
输出套用 LoRA 后的 CLIP,可传入 CLIP Text Encode、Prompt Encode、IPAdapter 等节点。
💡 使用建议与说明
LoRA 是一种轻量微调技术,可在不修改基础模型参数的前提下,为生成模型注入人物特征、艺术风格、姿态细节等能力。
1、必须接入基础模型与 CLIP 输出
否则无法融合,会报错或不生效。
2、支持多个 LoRA 串联加载
可以连续使用多个 Load LoRA 节点,对同一模型反复加载多个模块(建议搭配不同强度控制)。
3、用于提升提示词理解能力
有些 LoRA 能增强模型对复杂词语或新领域词的理解力,如医疗、建筑、工业等。
4、调节强度有助于保持风格平衡
写实合成推荐强度 0.8~0.9艺术风格推荐 1.0多 LoRA 混用建议主风格设置为 1.0,辅风格低于 0.6
5、可与 IPAdapter / ControlNet 配合
在原图控制的基础上,通过 LoRA 叠加“风格补偿”或“角色变换”模块。
“点赞行美意,赞赏是鼓励”