函数的连续性 函数可微 函数可导 函数可偏导

基础知识:
lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) = A ⇔ lim ⁡ x → x 0 f ( x ) = A \lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)=A \Leftrightarrow \lim _{x \rightarrow x_{0}} f(x)=A xx0limf(x)=xx0+limf(x)=Axx0limf(x)=A
lim ⁡ x → x 0 − f ( x ) ≠ lim ⁡ x → x 0 + f ( x ) ⇒ lim ⁡ x → x 0 f ( x ) \lim _{x \rightarrow x_{0}^{-}} f(x) \neq \lim _{x \rightarrow x_{0}^{+}} f(x) \Rightarrow \lim _{x \rightarrow x_{0}} f(x) xx0limf(x)=xx0+limf(x)xx0limf(x)不存在但不是 ∞ \infty

  • 一元函数的连续性:

    • 前提:
      • 1 函数f(x)在点x。有定义
      • 2 l i m x → x 0 − f ( x ) lim _{x \rightarrow x_{0}^{-}} f(x) limxx0f(x)
        必须存在
        (是个常数)
      • 3 相等,即
        lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) xx0limf(x)=f(x0)
  • 二元函数的连续条件:

  • lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right) (x,y)(x0,y0)limf(x,y)=f(x0,y0)

  • 在某点可导:

    • 定义1:
      在这里插入图片描述
    • 定义二:
      在这里插入图片描述
  • 可偏导:
    在这里插入图片描述

  • 可微:
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ROOOOOOM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值