二元函数的连续、可偏导、可微、偏导数连续究竟意味着啥?

52 篇文章 1 订阅

注:多元函数的偏导数在一点连续是指, 偏导数在该点的某个邻域内存在,于是偏导数在这个邻域内有定义,而且这个偏导函数在该点连续。理解这一点,才能理解后面的充分条件。

下面的这一步推导用到了这个条件:

为什么函数

f(x,y)=\left\{\begin{matrix} \frac{xy}{\sqrt{x^2+y^2}}, \ \ \ x^2+y^2\neq 0\\ \\ 0, x^2+y^2=0 \end{matrix}\right.

在原点可导不可微?

先看一下函数图形,能看出什么特征:

确实比较怪诞,首先由于两个主曲率面和曲面截线弯曲方向不同,此曲面的高斯曲率一定是负的,类似于马鞍面,所以在原点处一定不可展。

而证明中极限

不存在的,我们也看一下它的图形:

极限不存在是显然的,因为沿着不同的y=kx接近原点,和z轴的交点是不同的。

基于以上两点,推导出了,此函数可导但是不可微,因为再原点不存在高阶无穷小。

为什么可导加上导函数连续,函数就变成可微的呢?首先我们看上面的函数确实是可导的,但是不可微一定是不满足导函数连续的条件.

计算一下:

\LARGE f_x=\frac{y^3}{x^2\sqrt{x^2+y^2}+y^2\sqrt{x^2+y^2}}

\LARGE f_y=\frac{x^3}{x^2\sqrt{x^2+y^2}+y^2\sqrt{x^2+y^2}}

 看一下它们的图形:

可以看到此函数的特征,确实在原点不连续的,有跳跃。


对于一元函数来说,一元函数可导,在其可导区间内对应的导函数也连续,前提和结论互为充要条件,所以对于一个一元函数直观上可以看出来可不可导,以及导函数是不是连续。比如,出现尖峰就是一元函数不可导的直接证据,因为尖峰左右两边的导数不一样。导函数出现了间断点,不连续。

但是对于二元函数来说,不可导的特征似乎不那么明显,上面就是一个例子,因为在原点处并没有出现尖峰。结果导函数仍然不连续。看连尖峰这个条件变得不那么必要,但是尖峰条件是否仍然是充分的呢?我们再来看一个函数,它的图形是一个椭圆,我们查看一下椭圆的尖峰处的可导性。

 可以看到,不像一元函数的情况,尖峰不是必要的,但是却是充分的,圆锥的顶部存在尖峰,求导后不连续,尖峰仍然可以说明,此函数在剑锋点不存在偏导数。

另一方面,在一点处可以求偏导,是二元函数可微的必要条件,这里在尖峰处不存在骗导,直接证明圆锥函数在尖峰处不可微.


结束! 

  • 23
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值