【考研数学】四. 多元函数微积分

四. 多元函数微积分

二元函数的极限计算方法

  1. 初步判断:取 y = kx,求一元函数极限。若答案为无穷或者含k,则极限不存在。若是确定的数字,则进行第二步。
  2. 最终判断:取 y = kx^2 , 求一元函数极限,若答案无穷或者含k,则极限不存在。若是确定的数字,则进行下一步。
  3. 求值:取 y = 0.

由此可以引申出,证明重极限不存在常用方法: 取两种不同的路径,使得极限不相等或不存在。

二元函数的连续性

  • 极限值 == 函数值
  • 非分段 每点连续
  • 分段 非分段点必连续

可偏导的定义

  • 对x的偏导,就是固定y,对x的增量作差
  • 可偏导的,和可导的不一样。
  • 分段函数在分段点处的偏导,只能用定义求

复合函数的偏导数和全微分

对因变量 使用 求导公式,后面要 乘 偏因变量 / 偏自变量
其他自变量当成数。

方程个数 = 因变量个数
自变量 + 因变量 = 总变量
分母自变量,分子含因变量。

隐函数(抽象函数)的偏导数和全微分

考研数学中的出题需结合多种方法求解

  • 方法一:基本公式
  • 方法二:非单一字母,换元换成单一字母。(方法一前提)

如:z = f(x+y, v )= f(u,v)

m = f (2x , y) = f( u , y)

  • 方法三:f’1 和 f’2 仍然是括号内变量的函数

对于二元函数而言
- 某点处连续与偏导毫无关系
- 对x偏导且对y偏导都存在,才可以说它偏导数存在
- 极限值 = 函数值 , 才连续

抽象函数求偏导对每一个因变量都求一次它的偏导 乘 对应自变量函数的导数

二元函数的极值和条件极值

求二元函数的极值⭐

  1. 求f(x,y)对x的偏导,y的偏导
  2. 令两个偏导 = 0 , 求驻点
  3. 求 对x的二阶偏导,对y的二阶偏导,对x,y的二阶偏导
  4. 把每个驻点代入到第三步的结果,算出A,B,C。根据AC - B^2 与 0 关系,判断是否是极值点
  5. 求出极值

求条件极值⭐

求 f(x,y) 在条件g(x,y)=0下的极值

拉格朗日乘数法

  1. 确保附加条件一侧为0:g(x,y) = 0
  2. 构造拉格朗日函数(这里增加一个变量λ)
    F ( x , y , λ ) = f ( x , y ) + λ ∗ g ( x , y ) F(x,y,\textcolor{blue}λ) = f(x,y) + \textcolor{blue}λ * g(x,y) F(x,y,λ)=f(x,y)+λg(x,y)
  3. 对每一个自变量变量求偏导,且令其值为0
    { ∂ F ∂ x = ∂ f ∂ x + λ ∂ g ∂ x ∂ F ∂ y = ∂ f ∂ y + λ ∂ g ∂ y ∂ F ∂ λ = λ g ( x , y ) \begin{cases}\frac{∂F}{∂x}= \frac{∂f}{∂x} + λ\frac{∂g}{∂x} \\ \frac{∂F}{∂y}= \frac{∂f}{∂y} + λ\frac{∂g}{∂y} \\ \frac{∂F}{∂λ}= λg(x,y) \end{cases} xF=xf+λxgyF=yf+λygλF=λg(x,y)
  4. 结合题中条件,解得极值点,代入得值。

记忆:在原本的f(x,y)上增加一个维度,条件函数作为变量。

解题技巧:对每个变量求偏导的前几个等式求关系,再代入最后一个等数

拓展:三维情况

求函数f(x,y,z)在条件g(x,y,z)=0 h(x,y,z)=0下的极值。

构造函数如下:这时候要加两个变量。
F ( x , y , z , λ , u ) = f ( x , y , z ) + λ ∗ g ( x , y , z ) + u ∗ h ( x , y , z ) F(x,y,z,\textcolor{blue}λ,\textcolor{blue}u) = f(x,y,z) + \textcolor{blue}λ * g(x,y,z) + \textcolor{blue}u * h(x,y,z) F(x,y,z,λ,u)=f(x,y,z)+λg(x,y,z)+uh(x,y,z)

补充:

1. 切平面的法向量

在这里插入图片描述

2. 多元函数的驻点

注意:多元函数的极值点一定是驻点、但驻点不一定是多元函数的极值点。

在这里插入图片描述

3. 可微函数的方向导数

方向导数相当于对每一个维度的变量求偏导,得到的结果组合成一个向量。内积一个方向为l的单位向量即可。
可能结合条件极值考。
在这里插入图片描述

4. 平面垂直

平面垂直: 相互垂直两平面的法向量点积为 0

两平面若相互垂直, 则此两平面的法向量点积为 0

5. 方向导数、梯度、旋度

这三个的缩写要记得,不然考试考出了都不知道求什么…

在这里插入图片描述
其中grad对应的是梯度, 对应一个向量表达。求解时分别对三方向下求偏导即可:
在这里插入图片描述
散度和旋度实际上对应的是向量的一个数值:
在这里插入图片描述

旋度:求解需要靠行列式计算
在这里插入图片描述

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如果皮卡会coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值