Turtles

题意:在二维平面内,求从左上角走到右下角的两条不相交路线的方案数 

思路:Lindström–Gessel–Viennot

M = \begin{pmatrix} e(a_1,b_1) & e(a_1,b_2) & \cdots & e(a_1,b_n) \\ e(a_2,b_1) & e(a_2,b_2) & \cdots & e(a_2,b_n) \\ \vdots & \vdots & \ddots & \vdots \\ e(a_n,b_1) & e(a_n,b_2) & \cdots & e(a_n,b_n) \end{pmatrix}.

其中e(a, b)表示a 到 b的路径条数。所以答案是

 

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
#define maxn 200001
#define mod 1000000007
#define eps 1e-9
int Num;
char CH[20];
const int inf=0x3f3f3f3f;
inline ll read()
{
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}


int n,m;
char s[3005][3005];
ll dp[3005][3005];
ll solve(int x,int y,int xx,int yy)
{
    if(s[x][y]=='#')
        return 0;
    memset(dp,0,sizeof(dp));
    dp[x][y]=1;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(s[i][j]=='#')
                continue;
            dp[i][j]+=dp[i-1][j]+dp[i][j-1];
            dp[i][j]%=mod;
        }
    }
    return dp[xx][yy];
}
int main()
{
    //test;
    n=read(),m=read();
    for(int i=1;i<=n;i++)
        scanf("%s",s[i]+1);
    ll tmp=solve(1,2,n-1,m)*solve(2,1,n,m-1)-solve(1,2,n,m-1)*solve(2,1,n-1,m);
    printf("%d\n",(tmp%mod+mod)%mod);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值