我的PAT-ADVANCED代码仓:https://github.com/617076674/PAT-ADVANCED
原题链接:https://pintia.cn/problem-sets/994805342720868352/problems/994805343043829760
题目描述:
题目翻译:
1146 拓扑排序
这是2018年研究生入学考试中给出的一个问题:以下哪项不是从给定有向图获得的拓扑序列? 现在你需要编写一个程序来测试每个选项。
输入格式:
每个输入文件包含一个测试用例。对于每个测试用例,第一行给出两个正整数N(<= 1,000),代表图中的顶点数,以及M(<= 10,000),代表有向边的数量。然后紧跟着M行,每行给出边的起点和终点。顶点编号为1 ~ N。在图形之后,还有另一个正整数K(<= 100)。然后跟随K行查询,每行给出所有顶点的排列。一行中的所有数字都用空格分隔。
输出格式:
在一行中打印对应于“非拓扑顺序”的所有查询索引。索引从零开始计数。所有数字都用空格分隔,并且在行的开头或结尾不能有额外的空格。题目保证至少有一个答案。
输入样例:
6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
输出样例:
3 4
知识点:拓扑排序
思路:判断序列中每个点的入度是否为零,并将其相邻顶点的入度减1
拓扑排序的算法步骤如下:
(1)定义一个队列Q,并把所有入度为0的节点加入队列。
(2)取队首节点,输出。然后删去所有从它出发的边,并令这些边到达的顶点的入度减1,如果某个顶点的入度减为0,则将其加入队列。
(3)反复进行(2)操作,直到队列为空。如果队列为空时入过队的节点数恰好为N,说明拓扑排序成功,图G为有向无环图;否则,拓扑排序失败,图G中有环。
对于本题,不需要我们求拓扑排序,而是验证某序列是否是拓扑排序序列。我们只需要依次判断序列中每个点的入度是否为零,同时将其相邻顶点的入度减即可。
注意,本题代码中对于判断某个序列是否是拓扑排序序列是边读入数据边判断的,所以即使判断了当前序列不是拓扑序列,我们也不可以简单地break出循环,我们依然要读取当前序列中的剩余元素,否则会导致后序的数据全部错位。在实现中,我定义了一个bool类型变量flag来记录当前序列是否已被判定为非拓扑序列,flag为false表示当前序列已经被判定为非拓扑序列,我们在循环中只需要读取数据,另外的判断语句我们都continue跳过。
时间复杂度是O(KN)。空间复杂度是O(M + 1001)。
C++代码:
#include<iostream>
#include<vector>
using namespace std;
vector<int> graph[1001];
int main() {
int N, M;
scanf("%d %d", &N, &M);
int inDegree[N + 1]; //每个顶点的入度
fill(inDegree + 1, inDegree + N + 1, 0); //初始化每个顶点的入度均为0
int from, to;
for(int i = 0; i < M; i++) {
scanf("%d %d", &from, &to);
graph[from].push_back(to);
inDegree[to]++; //顶点to的入度加1
}
vector<int> results; //存储结果
int K;
scanf("%d", &K);
for(int i = 0; i < K; i++) {
int tempInDegree[N + 1];
for(int j = 1; j < N + 1; j++) {
tempInDegree[j] = inDegree[j]; //tempInDegree复制一份inDegree数组
}
int num;
bool flag = true;
for(int j = 0; j < N; j++) {
scanf("%d", &num);
if(!flag){
continue;
}
if(tempInDegree[num] != 0) { //一旦入度不为0,说明不是拓扑排序
results.push_back(i);
flag = false;
}
for(int k = 0; k < graph[num].size(); k++) { //将与num相连的另一个顶点的入度减1
tempInDegree[graph[num][k]]--;
}
}
}
for(int i = 0; i < results.size(); i++) { //输出结果
printf("%d", results[i]);
if(i != results.size() - 1) {
printf(" ");
} else {
printf("\n");
}
}
return 0;
}
C++解题报告: