论文地址:https://arxiv.org/abs/2103.14030https://arxiv.org/abs/2103.14030
代码地址:https://github.com/microsoft/Swin-Transformerhttps://github.com/microsoft/Swin-Transformer
本文参考了博文:
图解swin transformerZZK最新论文解读https://mp.weixin.qq.com/s/8x1pgRLWaMkFSjT7zjhTgQ两篇文章写的非常详细,阅读以上两篇文章对于论文理解非常有帮助!
本文大部分内容都来源于上述文章!
Abstract
本文提出了一种新的视觉Transformer,叫 Swin Transformer 。可以用作计算机视觉的主干backbone。(从语言到视觉的挑战来自这两个领域之间的差异,比如视觉实体规模的变化很大,图像中的像素比文本中单词的高分辨率。)
目前Transformer应用到图像领域主要有两大挑战:
-
视觉实体变化大,在不同场景下视觉Transformer性能未必很好
-
图像分辨率高,像素点多,Transformer基于全局自注意力的计算导致计算量较大
针对上述两个问题,作者提出了一种包含滑窗操作,具有层级设计的Swin Transformer。
移位窗口方案通过将自注意计算限制在不重叠的局部窗口上,同时也允许跨窗口连接,从而带来了更高的效率。这种层次体系结构具有在不同尺度上建模的灵活性,并且对图像大小具有线性的计算复杂度。在多个任务上取得了最佳性能。
Introduction
(a)所提出的Swin Transformer ,使用了类似卷积神经网络中的层次化构建方法(Hierarchical feature maps)。比如特征图尺寸中有对图像下采样4倍的,8倍的以及16倍的。在更深的层中合并图像斑块(用灰色显示),并且由于只计算每个局部窗口(用红色表示),因此对输入图像大小具有线性计算复杂度。可以用于图像分类(image classification)和密集预测(dense recognition)任务的backbone。
(b)相比之下,以前的vision Transformer 产生单一低分辨率的特征图,由于全局自注意力的计算,对输入图像大小具有二次计算复杂度。
在Swin Transformer中使用了Windows Multi-Head Self-Attention(W-MSA)的概念,比如在上图的4倍下采样(4X)和8倍下采样(8X)中,将特征图划分成了多个不相交的区域(Window),并且Multi-Head Self-Attention只在每个窗口(Window)内进行。相对于Vision Transformer中直接对整个(Global)特征图进行Multi-Head Self-Attention,这样做的目的是能够减少计算量的,尤其是在浅层特征图很大的时候。这样做虽然减少了计算量但也会隔绝不同窗口之间的信息传递,所以在论文中作者又提出了 Shifted Windows Multi-Head Self-Attention(SW-MSA)的概念,通过此方法能够让信息在相邻的窗口中进行传递。
Method
模行的整体结构如图3所示(Swin-T)。整个模型采取层次化的设计,一共包含4个Stage,每个stage都会缩小输入特征图的分辨率,像CNN一样逐层扩大感受野。
-
在输入开始的时候,做了一个
Patch Embedding
,将图片切成一个个图块,并嵌入到Embedding
。 -
在每个Stage里,由
Patch Merging
和多个Block组成。 -
其中
Patch Merging
模块主要在每个Stage一开始降低图片分辨率。 -
而Block具体结构如右图所示,主要是
LayerNorm
,MLP
,Window Attention
和Shifted Window Attention
组成。
首先将一个RGB图像()输入Patch Partition 模块中进行切分。patch size 为,然后在channel 维度上展平(flatten),因此每个patch 的特征尺寸为。所以通过Patch Partition后图像shape由 [H, W, 3]
变成了 [H/4, W/4, 48]。
然后在通过Linear Embeding层对每个像素的channel数据做线性变换,由48变成C,即图像shape再由 [H/4, W/4, 48]
变成了 [H/4, W/4, C]。
在patch tokens 应用了几个修改了的自注意计算的Transformer blocks,也就是Swin Transformer blocks。Transformer blocks 保持token的大小为,与Linear Embedding 构成了“Stage 1”。
为了产生层次表示,token的数量随着网络的加深由patch merging layers 减少。第一个patch merging layer 会将 的相邻像素划分为一个patch。接着应用一个 linear layer 在深度方向4C-dimensional 进行特征concat拼接。这将token的数量减少了(2倍下采样),输出维度变成2C。然后应用Swin Transformer进行特征变换,分辨率保持在。第一个patch merging 和 特征转化的块为“Stage 2”。该过程重复两次,分别为“Stage 3”和“Stage 4”,输出分辨率分别为和。
Patch Embedding
在输入进Block前,我们需要将图片切成一个个patch,然后嵌入向量。
具体做法是对原始图片裁成一个个 window_size * window_size
的窗口大小,然后进行嵌入。
这里可以通过二维卷积层,将stride,kernelsize设置为window_size大小。设定输出通道来确定嵌入向量的大小。最后将H,W维度展开,并移动到第一维度。
import torch
import torch.nn as nn
class PatchEmbed(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size) # -> (img_size, img_size)
patch_size = to_2tuple(patch_size) # -> (patch_size, patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
# 假设采取默认参数
x = self.proj(x) # 出来的是(N, 96, 224/4, 224/4)
x = torch.flatten(x, 2) # 把HW维展开,(N, 96, 56*56)
x = torch.transpose(x, 1, 2) # 把通道维放到最后 (N, 56*56, 96)
if self.norm is not None:
x = self.norm(x)
return x
Patch Merging
在每个Stage中首先要通过一个Patch Merging层进行下采样(Stage1除外)。该模块的作用是在每个Stage开始前做降采样,用于缩小分辨率,调整通道数 进而形成层次化的设计,同时也能节省一定运算量。
在CNN中,则是在每个Stage开始前用stride=2
的卷积/池化层来降低分辨率。
如上文所说,每次降采样是两倍,因此在行方向和列方向上,间隔2选取元素。然后拼接在一起作为一整个张量,最后展开。此时通道维度会变成原先的4倍(因为H,W各缩小2倍),此时再通过一个全连接层再调整通道维度为原来的两倍。
下面是一个示意图(输入张量N=1, H=W=8, C=1,不包含最后的全连接层调整)。
对应代码实现:
class PatchMerging(nn.Module):
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) # 调整通道
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
Window Partition/Reverse
window partition
函数是用于对张量划分窗口,指定窗口大小。将原本的张量从 N H W C
, 划分成 num_windows*B, window_size, window_size, C
,其中 num_windows = H*W / window_size
,即窗口的个数。而window reverse
函数则是对应的逆过程。这两个函数会在后面的Window Attention
用到。
代码:
def window_partition(x, window_size):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
W-MSA
引入Windows Multi-head Self-Attention(W-MSA)模块是为了减少计算量。如下图所示,左侧使用的是普通的Multi-head Self-Attention(MSA)模块,对于feature map中的每个像素(或称作token,patch)在Self-Attention计算过程中需要和所有的像素去计算。但在图右侧,在使用Windows Multi-head Self-Attention(W-MSA)模块时,首先将feature map按照MxM(例子中的M=2)大小划分成一个个Windows,然后单独对每个Windows内部进行Self-Attention。
两个计算量计算方式:【建议参考博文:Swin-Transformer网络结构详解_霹雳吧啦Wz-CSDN博客】
- h代表feature map的高度
- w代表feature map的宽度
- C代表feature map的深度
- M代表每个窗口(Windows)的大小
Self-attention 计算公式:
注:矩阵运算计算量公式 :
的计算量为
本文注意力计算公式,主要是在原始计算Attention的公式中的Q,K时加入了相对位置编码。后续实验有证明相对位置编码的加入提升了模型性能。
代码:
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads # nH
head_dim = dim // num_heads # 每个注意力头对应的通道数
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 设置一个形状为(2*(Wh-1) * 2*(Ww-1), nH)的可学习变量,用于后续的位置编码
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
相对位置编码 Relative Position Bias
如下图,假设输入的feature map高宽都为2,那么首先我们可以构建出每个像素的绝对位置(左下方的矩阵),对于每个像素的绝对位置是使用行号和列号表示的。比如蓝色的像素对应的是第0行第0列所以绝对位置索引是( 0 , 0 ) ,接下来再看看相对位置索引。首先看下蓝色的像素,在蓝色像素使用q与所有像素k进行匹配过程中,是以蓝色像素为参考点。然后用蓝色像素的绝对位置索引与其他位置索引进行相减,就得到其他位置相对蓝色像素的相对位置索引。例如黄色像素的绝对位置索引是( 0 , 1 ) ,则它相对蓝色像素的相对位置索引为( 0 , 0 ) − ( 0 , 1 ) = ( 0 , − 1 ) 。那么同理可以得到其他位置相对蓝色像素的相对位置索引矩阵。同样,也能得到相对黄色,红色以及绿色像素的相对位置索引矩阵。接下来将每个相对位置索引矩阵按行展平,并拼接在一起可以得到下面的4x4矩阵 。
源码中作者为了方便把二维索引给转成了一维索引:
首先在原始的相对位置索引上加上M-1(M为窗口的大小,在本示例中M=2),加上之后索引中就不会有负数了。接着将所有的行标都乘上2M-1。 最后将行标和列标进行相加。
前面计算的是相对位置索引,并不是相对位置偏置参数。真正使用到的可训练参数,是保存在relative position bias table
表里的。这个表的长度是等于(2M-1)x (2M-1)。
相对位置编码部分代码:
首先QK计算出来的Attention张量形状为(numWindows*B, num_heads, window_size*window_size, window_size*window_size)
。
利用torch.arange
和torch.meshgrid
函数生成对应的坐标,这里我们以windowsize=2
为例子。
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.meshgrid([coords_h, coords_w]) # -> 2*(wh, ww)
"""
(tensor([[0, 0],
[1, 1]]),
tensor([[0, 1],
[0, 1]]))
"""
然后堆叠起来,展开为一个二维向量
coords = torch.stack(coords) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
"""
tensor([[0, 0, 1, 1],
[0, 1, 0, 1]])
"""
利用广播机制,分别在第一维,第二维,插入一个维度,进行广播相减,得到 2, wh*ww, wh*ww
的张量
relative_coords_first = coords_flatten[:, :, None] # 2, wh*ww, 1
relative_coords_second = coords_flatten[:, None, :] # 2, 1, wh*ww
relative_coords = relative_coords_first - relative_coords_second # 最终得到 2, wh*ww, wh*ww 形状的张量
因为采取的是相减,所以得到的索引是从负数开始的,加上偏移量,让其从0开始。
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
后续需要将其展开成一维偏移量。而对于(1,2)和(2,1)这两个坐标。在二维上是不同的,但是通过将x,y坐标相加转换为一维偏移的时候,他的偏移量是相等的。如下图:
对其中做了个乘法操作,以进行区分。
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
然后再最后一维上进行求和,展开成一个一维坐标,并注册为一个不参与网络学习的变量
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
前向传播代码:
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0) # (1, num_heads, windowsize, windowsize)
if mask is not None: # 下文会分析到
...
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
首先输入张量形状为 numWindows*B, window_size * window_size, C。
-
然后经过
self.qkv
这个全连接层后,进行reshape,调整轴的顺序,得到形状为3, numWindows*B, num_heads, window_size*window_size, c//num_heads
,并分配给q,k,v
。 -
根据公式,我们对
q
乘以一个scale
缩放系数,然后与k
(为了满足矩阵乘要求,需要将最后两个维度调换)进行相乘。得到形状为(numWindows*B, num_heads, window_size*window_size, window_size*window_size)
的attn
张量 -
之前我们针对位置编码设置了个形状为
(2*window_size-1*2*window_size-1, numHeads)
的可学习变量。我们用计算得到的相对编码位置索引self.relative_position_index
选取,得到形状为(window_size*window_size, window_size*window_size, numHeads)
的编码,加到attn
张量上 -
暂不考虑mask的情况,剩下就是跟transformer一样的softmax,dropout,与
V
矩阵乘,再经过一层全连接层和dropout。
Shifted Window Attention ( SW-MSA )
Window Attention是在每个窗口下计算注意力的,为了更好的和其他window进行信息交互,Swin Transformer引入了shifted window操作。
根据左右两幅图对比能够发现窗口(Windows)发生了偏移(可以理解成窗口从左上角分别向右侧和下方各偏移了个像素)。看下偏移后的窗口(右侧图),比如对于第一行第2列的2x4的窗口,它能够使第L层的第一排的两个窗口信息进行交流。再比如,第二行第二列的4x4的窗口,他能够使第L层的四个窗口信息进行交流,其他的同理。那么这就解决了不同窗口之间无法进行信息交流的问题。
在实际代码里,是通过对特征图移位,并给Attention设置mask来间接实现的。能在保持原有的window个数下,最后的计算结果等价。
代码里对特征图移位是通过torch.roll
来实现的,具体操作可以参考:torch.roll() 函数用法_乐亦亦乐的博客-CSDN博客
首先对Shift Window后的每个窗口都给上index,并且做一个roll
操作(window_size=2, shift_size=1)
移动完后,4是一个单独的窗口;将5和3合并成一个窗口;7和1合并成一个窗口;8、6、2和0合并成一个窗口。这样又和原来一样是4个4x4的窗口了,所以能够保证计算量是一样的。把不同的区域合并在一起(比如5和3)进行MSA,这信息不就乱窜了吗?是的,为了防止这个问题,在实际计算中使用的是masked MSA
即带蒙板mask的MSA,这样就能够通过设置蒙板来隔绝不同区域的信息了。关于mask如何使用,可以看下下面这幅图,下图是以上面的区域5和区域3为例。
代码如下:
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
tensor([[[[[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]]],
[[[ 0., -100., 0., -100.],
[-100., 0., -100., 0.],
[ 0., -100., 0., -100.],
[-100., 0., -100., 0.]]],
[[[ 0., 0., -100., -100.],
[ 0., 0., -100., -100.],
[-100., -100., 0., 0.],
[-100., -100., 0., 0.]]],
[[[ 0., -100., -100., -100.],
[-100., 0., -100., -100.],
[-100., -100., 0., -100.],
[-100., -100., -100., 0.]]]]])
网络结构细节