Swin Transformer (ICCV 2021 best paper)

论文地址:https://arxiv.org/abs/2103.14030icon-default.png?t=LA46https://arxiv.org/abs/2103.14030

代码地址:https://github.com/microsoft/Swin-Transformericon-default.png?t=LA46https://github.com/microsoft/Swin-Transformer

 本文参考了博文:

Swin-Transformer网络结构详解_霹雳吧啦Wz-CSDN博客文章目录0 前言1 网络整体框架2 Patch Merging详解3 W-MSA详解Ω(MSA)\Omega (MSA)Ω(MSA)模块计算量Ω(W−MSA)\Omega (W-MSA)Ω(W−MSA)模块计算量4 SW-MSA详解5 Relative Position Bias详解6 模型详细配置参数0 前言Swin Transformer是2021年微软研究院发表在ICCV上的一篇文章,并且已经获得ICCV 2021 best paper的荣誉称号。Swin Transformer网络是Tranhttps://blog.csdn.net/qq_37541097/article/details/121119988

图解swin transformerZZK最新论文解读https://mp.weixin.qq.com/s/8x1pgRLWaMkFSjT7zjhTgQ两篇文章写的非常详细,阅读以上两篇文章对于论文理解非常有帮助!

本文大部分内容都来源于上述文章!

Abstract

本文提出了一种新的视觉Transformer,叫 Swin Transformer 。可以用作计算机视觉的主干backbone。(从语言到视觉的挑战来自这两个领域之间的差异,比如视觉实体规模的变化很大,图像中的像素比文本中单词的高分辨率。)

目前Transformer应用到图像领域主要有两大挑战:

  • 视觉实体变化大,在不同场景下视觉Transformer性能未必很好

  • 图像分辨率高,像素点多,Transformer基于全局自注意力的计算导致计算量较大

针对上述两个问题,作者提出了一种包含滑窗操作,具有层级设计的Swin Transformer。

移位窗口方案通过将自注意计算限制在不重叠的局部窗口上,同时也允许跨窗口连接,从而带来了更高的效率。这种层次体系结构具有在不同尺度上建模的灵活性,并且对图像大小具有线性的计算复杂度。在多个任务上取得了最佳性能。

Introduction

(a)所提出的Swin Transformer ,使用了类似卷积神经网络中的层次化构建方法(Hierarchical feature maps)。比如特征图尺寸中有对图像下采样4倍的,8倍的以及16倍的。在更深的层中合并图像斑块(用灰色显示),并且由于只计算每个局部窗口(用红色表示),因此对输入图像大小具有线性计算复杂度。可以用于图像分类(image classification)和密集预测(dense recognition)任务的backbone。

(b)相比之下,以前的vision Transformer 产生单一低分辨率的特征图,由于全局自注意力的计算,对输入图像大小具有二次计算复杂度。

在Swin Transformer中使用了Windows Multi-Head Self-Attention(W-MSA)的概念,比如在上图的4倍下采样(4X)和8倍下采样(8X)中,将特征图划分成了多个不相交的区域(Window),并且Multi-Head Self-Attention只在每个窗口(Window)内进行。相对于Vision Transformer中直接对整个(Global)特征图进行Multi-Head Self-Attention,这样做的目的是能够减少计算量的,尤其是在浅层特征图很大的时候。这样做虽然减少了计算量但也会隔绝不同窗口之间的信息传递,所以在论文中作者又提出了 Shifted Windows Multi-Head Self-Attention(SW-MSA)的概念,通过此方法能够让信息在相邻的窗口中进行传递。

 Method

模行的整体结构如图3所示(Swin-T)。整个模型采取层次化的设计,一共包含4个Stage,每个stage都会缩小输入特征图的分辨率,像CNN一样逐层扩大感受野。

  • 在输入开始的时候,做了一个Patch Embedding,将图片切成一个个图块,并嵌入到Embedding

  • 在每个Stage里,由Patch Merging和多个Block组成。

  • 其中Patch Merging模块主要在每个Stage一开始降低图片分辨率。

  • 而Block具体结构如右图所示,主要是LayerNormMLPWindow Attention 和 Shifted Window Attention组成。

首先将一个RGB图像(H \times W \times 3)输入Patch Partition 模块中进行切分。patch size 为4\times 4,然后在channel 维度上展平(flatten),因此每个patch 的特征尺寸为4\times 4\times 3= 48。所以通过Patch Partition后图像shape由 [H, W, 3]变成了 [H/4, W/4, 48]。然后在通过Linear Embeding层对每个像素的channel数据做线性变换,由48变成C,即图像shape再由 [H/4, W/4, 48]变成了 [H/4, W/4, C]。

在patch tokens 应用了几个修改了的自注意计算的Transformer blocks,也就是Swin Transformer blocks。Transformer blocks 保持token的大小为\frac{H}{4}\times \frac{W}{4},与Linear Embedding 构成了“Stage 1”。

为了产生层次表示,token的数量随着网络的加深由patch merging layers 减少。第一个patch merging layer 会将2\times2 的相邻像素划分为一个patch。接着应用一个 linear layer 在深度方向4C-dimensional 进行特征concat拼接。这将token的数量减少了2\times2= 4(2倍下采样),输出维度变成2C。然后应用Swin Transformer进行特征变换,分辨率保持在\frac{H}{8}\times \frac{W}{8}。第一个patch merging 和 特征转化的块为“Stage 2”。该过程重复两次,分别为“Stage 3”和“Stage 4”,输出分辨率分别为\frac{H}{16}\times \frac{W}{16}\frac{H}{32}\times \frac{W}{32}

Patch Embedding

在输入进Block前,我们需要将图片切成一个个patch,然后嵌入向量。

具体做法是对原始图片裁成一个个 window_size * window_size的窗口大小,然后进行嵌入。

这里可以通过二维卷积层,将stride,kernelsize设置为window_size大小。设定输出通道来确定嵌入向量的大小。最后将H,W维度展开,并移动到第一维度。

import torch
import torch.nn as nn


class PatchEmbed(nn.Module):
    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size) # -> (img_size, img_size)
        patch_size = to_2tuple(patch_size) # -> (patch_size, patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        # 假设采取默认参数
        x = self.proj(x) # 出来的是(N, 96, 224/4, 224/4) 
        x = torch.flatten(x, 2) # 把HW维展开,(N, 96, 56*56)
        x = torch.transpose(x, 1, 2)  # 把通道维放到最后 (N, 56*56, 96)
        if self.norm is not None:
            x = self.norm(x)
        return x

Patch Merging 

在每个Stage中首先要通过一个Patch Merging层进行下采样(Stage1除外)。该模块的作用是在每个Stage开始前做降采样,用于缩小分辨率,调整通道数 进而形成层次化的设计,同时也能节省一定运算量

在CNN中,则是在每个Stage开始前用stride=2的卷积/池化层来降低分辨率。

如上文所说,每次降采样是两倍,因此在行方向和列方向上,间隔2选取元素。然后拼接在一起作为一整个张量,最后展开。此时通道维度会变成原先的4倍(因为H,W各缩小2倍),此时再通过一个全连接层再调整通道维度为原来的两倍。

下面是一个示意图(输入张量N=1, H=W=8, C=1,不包含最后的全连接层调整)。

Image

 对应代码实现:

class PatchMerging(nn.Module):
    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) # 调整通道
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = x.view(B, H, W, C)

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x

Window Partition/Reverse

window partition函数是用于对张量划分窗口,指定窗口大小。将原本的张量从 N H W C, 划分成 num_windows*B, window_size, window_size, C,其中 num_windows = H*W / window_size,即窗口的个数。而window reverse函数则是对应的逆过程。这两个函数会在后面的Window Attention用到。

代码:

def window_partition(x, window_size):
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, window_size, H, W):
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x

W-MSA

引入Windows Multi-head Self-Attention(W-MSA)模块是为了减少计算量。如下图所示,左侧使用的是普通的Multi-head Self-Attention(MSA)模块,对于feature map中的每个像素(或称作token,patch)在Self-Attention计算过程中需要和所有的像素去计算。但在图右侧,在使用Windows Multi-head Self-Attention(W-MSA)模块时,首先将feature map按照MxM(例子中的M=2)大小划分成一个个Windows,然后单独对每个Windows内部进行Self-Attention。
在这里插入图片描述

 

两个计算量计算方式:【建议参考博文:Swin-Transformer网络结构详解_霹雳吧啦Wz-CSDN博客

  • h代表feature map的高度
  • w代表feature map的宽度
  • C代表feature map的深度
  • M代表每个窗口(Windows)的大小

Self-attention 计算公式:

注:矩阵运算计算量公式 :

A^{a\times b} \times B^{b\times c}的计算量为a\times b\times c

 


 本文注意力计算公式,主要是在原始计算Attention的公式中的Q,K时加入了相对位置编码。后续实验有证明相对位置编码的加入提升了模型性能。

代码: 

class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads # nH
        head_dim = dim // num_heads # 每个注意力头对应的通道数
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 设置一个形状为(2*(Wh-1) * 2*(Ww-1), nH)的可学习变量,用于后续的位置编码
  
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

 

相对位置编码 Relative Position Bias

如下图,假设输入的feature map高宽都为2,那么首先我们可以构建出每个像素的绝对位置(左下方的矩阵),对于每个像素的绝对位置是使用行号和列号表示的。比如蓝色的像素对应的是第0行第0列所以绝对位置索引是( 0 , 0 ) ,接下来再看看相对位置索引。首先看下蓝色的像素,在蓝色像素使用q与所有像素k进行匹配过程中,是以蓝色像素为参考点。然后用蓝色像素的绝对位置索引与其他位置索引进行相减,就得到其他位置相对蓝色像素的相对位置索引。例如黄色像素的绝对位置索引是( 0 , 1 ) ,则它相对蓝色像素的相对位置索引为( 0 , 0 ) − ( 0 , 1 ) = ( 0 , − 1 ) 。那么同理可以得到其他位置相对蓝色像素的相对位置索引矩阵。同样,也能得到相对黄色,红色以及绿色像素的相对位置索引矩阵。接下来将每个相对位置索引矩阵按行展平,并拼接在一起可以得到下面的4x4矩阵 。

在这里插入图片描述源码中作者为了方便把二维索引给转成了一维索引:

首先在原始的相对位置索引上加上M-1(M为窗口的大小,在本示例中M=2),加上之后索引中就不会有负数了。接着将所有的行标都乘上2M-1。 最后将行标和列标进行相加。

在这里插入图片描述

 在这里插入图片描述

在这里插入图片描述

前面计算的是相对位置索引,并不是相对位置偏置参数。真正使用到的可训练参数,是保存在relative position bias table表里的。这个表的长度是等于(2M-1)x (2M-1)。

 在这里插入图片描述

 相对位置编码部分代码:

首先QK计算出来的Attention张量形状为(numWindows*B, num_heads, window_size*window_size, window_size*window_size)

利用torch.arangetorch.meshgrid函数生成对应的坐标,这里我们以windowsize=2为例子。

coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.meshgrid([coords_h, coords_w]) # -> 2*(wh, ww)
"""
  (tensor([[0, 0],
           [1, 1]]), 
   tensor([[0, 1],
           [0, 1]]))
"""

然后堆叠起来,展开为一个二维向量

coords = torch.stack(coords)  # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
"""
tensor([[0, 0, 1, 1],
        [0, 1, 0, 1]])
"""

利用广播机制,分别在第一维,第二维,插入一个维度,进行广播相减,得到 2, wh*ww, wh*ww的张量

relative_coords_first = coords_flatten[:, :, None]  # 2, wh*ww, 1
relative_coords_second = coords_flatten[:, None, :] # 2, 1, wh*ww
relative_coords = relative_coords_first - relative_coords_second # 最终得到 2, wh*ww, wh*ww 形状的张量

因为采取的是相减,所以得到的索引是从负数开始的,加上偏移量,让其从0开始

relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1

后续需要将其展开成一维偏移量。而对于(1,2)和(2,1)这两个坐标。在二维上是不同的,但是通过将x,y坐标相加转换为一维偏移的时候,他的偏移量是相等的。如下图:

Image

 对其中做了个乘法操作,以进行区分。

relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1

Image

 然后再最后一维上进行求和,展开成一个一维坐标,并注册为一个不参与网络学习的变量

relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)

前向传播代码:

def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0) # (1, num_heads, windowsize, windowsize)

        if mask is not None: # 下文会分析到
            ...
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

        首先输入张量形状为 numWindows*B, window_size * window_size, C。

  • 然后经过self.qkv这个全连接层后,进行reshape,调整轴的顺序,得到形状为3, numWindows*B, num_heads, window_size*window_size, c//num_heads,并分配给q,k,v

  • 根据公式,我们对q乘以一个scale缩放系数,然后与k(为了满足矩阵乘要求,需要将最后两个维度调换)进行相乘。得到形状为(numWindows*B, num_heads, window_size*window_size, window_size*window_size)attn张量

  • 之前我们针对位置编码设置了个形状为(2*window_size-1*2*window_size-1, numHeads)的可学习变量。我们用计算得到的相对编码位置索引self.relative_position_index选取,得到形状为(window_size*window_size, window_size*window_size, numHeads)的编码,加到attn张量上

  • 暂不考虑mask的情况,剩下就是跟transformer一样的softmax,dropout,与V矩阵乘,再经过一层全连接层和dropout。


Shifted Window Attention ( SW-MSA )

Window Attention是在每个窗口下计算注意力的,为了更好的和其他window进行信息交互,Swin Transformer引入了shifted window操作。

 根据左右两幅图对比能够发现窗口(Windows)发生了偏移(可以理解成窗口从左上角分别向右侧和下方各偏移了个像素)。看下偏移后的窗口(右侧图),比如对于第一行第2列的2x4的窗口,它能够使第L层的第一排的两个窗口信息进行交流。再比如,第二行第二列的4x4的窗口,他能够使第L层的四个窗口信息进行交流,其他的同理。那么这就解决了不同窗口之间无法进行信息交流的问题。

 在实际代码里,是通过对特征图移位,并给Attention设置mask来间接实现的。能在保持原有的window个数下,最后的计算结果等价。

 代码里对特征图移位是通过torch.roll来实现的,具体操作可以参考:torch.roll() 函数用法_乐亦亦乐的博客-CSDN博客

首先对Shift Window后的每个窗口都给上index,并且做一个roll操作(window_size=2, shift_size=1)

Image

 移动完后,4是一个单独的窗口;将5和3合并成一个窗口;7和1合并成一个窗口;8、6、2和0合并成一个窗口。这样又和原来一样是4个4x4的窗口了,所以能够保证计算量是一样的。把不同的区域合并在一起(比如5和3)进行MSA,这信息不就乱窜了吗?是的,为了防止这个问题,在实际计算中使用的是masked MSA即带蒙板mask的MSA,这样就能够通过设置蒙板来隔绝不同区域的信息了。关于mask如何使用,可以看下下面这幅图,下图是以上面的区域5和区域3为例。

在这里插入图片描述

 代码如下:

if self.shift_size > 0:
            # calculate attention mask for SW-MSA
            H, W = self.input_resolution
            img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
            h_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            w_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt += 1

            mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
            mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
tensor([[[[[   0.,    0.,    0.,    0.],
           [   0.,    0.,    0.,    0.],
           [   0.,    0.,    0.,    0.],
           [   0.,    0.,    0.,    0.]]],


         [[[   0., -100.,    0., -100.],
           [-100.,    0., -100.,    0.],
           [   0., -100.,    0., -100.],
           [-100.,    0., -100.,    0.]]],


         [[[   0.,    0., -100., -100.],
           [   0.,    0., -100., -100.],
           [-100., -100.,    0.,    0.],
           [-100., -100.,    0.,    0.]]],


         [[[   0., -100., -100., -100.],
           [-100.,    0., -100., -100.],
           [-100., -100.,    0., -100.],
           [-100., -100., -100.,    0.]]]]])

网络结构细节 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乐亦亦乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值