初等数论-孙子定理 一谈

背景

  • 在我国古代的 《孙子算经》 一书中提到

“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”答曰:“二十三”。

  • 以上问题可以表示成解一般的同余式组:
    X≡2(mod3)
    X≡3(mod5)
    X≡2(mod7)
  • 令 a=2,b=3,c=2,上述式子又等于
    X≡a(mod3)
    X≡b(mod5)
    X≡c(mod7)
  • 则有 X≡70a+21b+15c(mod105)
  • 关于这个解一般的同余式组解法,在明朝程大位的 《算法统宗》 里有一首歌:

三人同行七十稀,五树梅花甘一枝,七十团圆整半月,除百零五便得知。

  • 译:三个人共同走路,其中有七十岁以上的老人可能性很少,五棵梅花树总共二十一枝,七个孩子当正月十五日时在家中团圆,把一百零五的某个倍数减去,就得到答案。
  • 关于同余式的解法研究,我国古代有着极光辉的成果,那就是数学家——孙子,发明了驰名中外的 孙子定理

定理

  • 如果K≥2,且 m1,m2,m3,…,mk是两两互素的K个整数,令M=m1m2m3…mk=m1M1=m2M2=m3M3=…=mkMk,则同时满足X≡b1(mod m1),X≡b2(mod m2),X≡b3(mod m3),…,X≡bk(mod mk)的正整数解是
  • X≡b1M1M1+b2M2M2+b3M3M3+…+bkMkMk,其中Mi是满足同余式
  • MiMi≡1(mod mi)

例题

  • 以文章开始提到的背景为例,首先确定M1,M2,M3

    M1=5*7=35
    M2=3*7=21
    M3=3*5=15

  • 再来求 M1,M2,M3

    1≡M1M1(mod3)≡35M1(mod3)≡2M1(mod3),故 M1=2
    1≡M2M2(mod5)≡21M2(mod5)≡1M2(mod5),故 M2=1
    1≡M3M3(mod7)≡35M3(mod7)≡1M3(mod7),故 M3=1

据定理,有

X≡2*2*35+3*1*21+2*1*15(mod3*5*7),即X≡23(mod105)。

X=23+105K ,其中 k=0,1,2…

参见 《初等数论(Ⅰ)》(陈景润 著)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值