电磁场与电磁波第四章 时变电磁场

第四章 时变电磁场

波动方程

问题的提出:

麦克斯韦方程—一阶矢量微分方程组,描述电场和磁场间的相互作用关系
波动方程—二阶矢量微分方程
麦克斯韦方程组===>波动方程

无源区的波动方程

在无源空间中,设媒质是线形、各向同性且无损耗的均匀媒质,则有
∇ 2 E ⃗ − μ ε ∂ 2 E ⃗ ∂ t 2 = 0 \nabla^2\vec{E}-\mu\varepsilon\frac{\partial^2 \vec{E}}{\partial t^2}=0 2E μεt22E =0
∇ 2 H ⃗ − μ ε ∂ 2 H ⃗ ∂ t 2 = 0 \nabla^2\vec{H}-\mu\varepsilon\frac{\partial^2 \vec{H}}{\partial t^2}=0 2H μεt22H =0
电磁波动方程

电磁场的位函数

引入位函数来描述时变电磁场,使一些问题的分析得到简化

位函数的定义

∇ ⋅ B ⃗ = 0 \nabla \cdot \vec{B}=0 B =0 => B ⃗ = ∇ × A ⃗ \vec{B}=\nabla \times\vec{A} B =×A => A ⃗ \vec{A} A 定义为矢量位
∇ × E ⃗ = − ∂ B ⃗ ∂ t \nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t} ×E =tB => ∇ × ( E ⃗ + ∂ A ⃗ ∂ t ) = 0 \nabla\times(\vec{E}+\frac{\partial\vec{A}}{\partial t})=0 ×(E +tA )=0 => E ⃗ + ∂ A ⃗ ∂ t = − ∇ φ \vec{E}+\frac{\partial \vec{A}}{\partial t}=-\nabla\varphi E +tA =φ为标量位
E ⃗ = − ∂ A ⃗ ∂ t − ∇ φ \vec{E}=-\frac{\partial \vec{A}}{\partial t}-\nabla \varphi E =tA φ

位函数的不确定性

满足下列变换关系的两组位函数( A ⃗ \vec{A} A φ \varphi φ)和( A ⃗ ′ \vec{A}\prime A φ ′ \varphi\prime φ)能描述同一个电磁场问题。
{ A ⃗ ′ = A ⃗ + ∇ ψ φ ′ = φ − ∂ ψ ∂ t ( ψ 为 任 意 可 微 函 数 ) \begin{cases} {\vec{A}\prime=\vec{A}+\nabla\psi}\\ {\varphi\prime=\varphi-\frac{\partial \psi}{\partial t}} \end{cases}(\psi为任意可微函数) {A =A +ψφ=φtψψ

位函数的规范条件

造成位函数的不确定性的原因就是没有规定 A ⃗ \vec{A} A 的散度。利用位函数的不确定性,可通过规定 A ⃗ \vec{A} A 的散度使位函数满足的方程得以简化。
洛仑兹条件:
∇ ⋅ A ⃗ + μ ε ∂ φ ∂ t = 0 \nabla\cdot\vec{A}+\mu\varepsilon\frac{\partial \varphi}{\partial t}=0 A +μεtφ=0
库仑条件
∇ ⋅ A ⃗ = 0 \nabla\cdot\vec{A}=0 A =0

位函数的微分方程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

电磁能量守恒定理

唯一性定理

时谐电磁场

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页