信号公式汇总之傅里叶变换

傅里叶级数
f ( t ) = a 0 + ∑ n = 1 ∞ [ a n c o s ( n ω 1 t ) + b n s i n ( n ω 1 t ) ] f(t)=a_0+\sum_{n=1}^{\infty}{[a_ncos(n\omega_1t)+b_nsin(n\omega_1t)]} f(t)=a0+n=1[ancos(nω1t)+bnsin(nω1t)]

其中: a 0 = 1 T 1 ∫ t 0 t 0 + T 1 f ( t ) d t a_0=\frac{1}{T_1}\int_{t_0}^{t_0+T_1}f(t)dt a0=T11t0t0+T1f(t)dt

       a n = 2 T 1 ∫ t 0 t 0 + T 1 f ( t ) ⋅ c o s ( n ω 1 t ) d t a_n=\frac{2}{T_1}\int_{t_0}^{t_0+T_1}f(t)\cdot cos(n\omega_1t)dt an=T12t0t0+T1f(t)cos(nω1t)dt

       b n = 2 T 1 ∫ t 0 t 0 + T 1 f ( t ) ⋅ s i n ( n ω 1 t ) d t b_n=\frac{2}{T_1}\int_{t_0}^{t_0+T_1}f(t)\cdot sin(n\omega_1t)dt bn=T12t0t0+T1f(t)sin(nω1t)dt

傅里叶系数推导

合并同频项: f ( t ) = A 0 + ∑ n = 1 ∞ A n s i n ( n ω 1 t + φ n ) f(t)=A_0+\sum_{n=1}^{\infty}{A_nsin(n\omega_1t+\varphi _n)} f(t)=A0+n=1Ansin(nω1t+φn)

其中: A 0 = a 0 , A n = a n 2 + b n 2 , φ n = a r c t a n a n b n A_0=a_0 , A_n=\sqrt{ a_n^2+b_n^2 },\varphi _n=arctan\frac{a_n}{b_n} A0=a0,An=an2+bn2 ,φn=arctanbnan

指数形式: f ( t ) = ∑ n = − ∞ ∞ F n ⋅ e j n ω 1 t f(t)=\sum_{n=-\infty}^{\infty}{F_n\cdot e^{jn\omega_1t}} f(t)=n=Fnejnω1t

其中: F n = 1 T 1 ∫ t 0 t 0 + T 1 f ( t ) e − j n ω 1 t d t = F_n=\frac{1}{T_1}\int_{t_0}^{t_0+T_1} f(t)e^{-jn\omega_1t}dt= Fn=T11t0t0+T1f(t)ejnω1tdt=

1 2 ( a n − j b n ) = 1 2 a n 2 + b n 2 e j φ n , φ n = a r c t a n ( − b n a n ) \frac{1}{2}(a_n-jb_n)=\frac{1}{2}\sqrt{a_n^2+b_n^2}e^{j\varphi_n},\varphi_n=arctan(-\frac{b_n}{a_n}) 21(anjbn)=21an2+bn2 ejφn,φn=arctan(anbn)

帕塞瓦尔定理: P = ∑ n = − ∞ ∞ ∣ F n ∣ 2 P=\sum_{n=-\infty}^{\infty}{|F_n|^2} P=n=Fn2

傅里叶变换
正变换: F ( j ω ) = F [ f ( t ) ] = ∫ − ∞ ∞ f ( t ) e − j ω t d t F(j\omega)=\mathscr{F}[f(t)]=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt F(jω)=F[f(t)]=f(t)ejωtdt

逆变换: f ( t ) = F − 1 [ F ( j ω ) ] = 1 2 π ∫ − ∞ ∞ F ( j ω ) e j ω t d ω f(t)=\mathscr{F}^{-1}[F(j\omega)]=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{j\omega t}d\omega f(t)=F1[F(jω)]=2π1F(jω)ejωtdω


基本信号的傅里叶变换:

信号类型傅里叶变换
单边指数: e − α t ε ( t ) ← → e^{-\alpha t}\varepsilon(t)\leftarrow\rightarrow eαtε(t)   1 α + j ω \frac{1}{\alpha+j\omega} α+jω1
双边指数: e − α t ( 绝 对 值 ) e^{-\alpha t(绝对值)} eαt() ← → \leftarrow\rightarrow    2 α α 2 + ω 2 \frac{2\alpha}{\alpha^2+\omega^2} α2+ω22α
门信号:       g τ ( t ) g_{\tau}(t) gτ(t)   ← → \leftarrow\rightarrow    τ S a ( ω τ 2 ) \tau Sa(\frac{\omega \tau }{2}) τSa(2ωτ)
符号函数: s g n ( t ) sgn(t) sgn(t)   ← → \leftarrow\rightarrow     2 j ω \frac{2}{j\omega} jω2
冲激函数: δ ( t ) \delta (t) δ(t)    ← → \leftarrow\rightarrow     1 1 1
常数1:       1 1 1      ← → \leftarrow\rightarrow     2 π δ ( ω ) 2\pi\delta(\omega) 2πδ(ω)
冲激偶: δ ′ ( t ) \delta{\prime}(t) δ(t)    ← → \leftarrow\rightarrow     j ω {j\omega} jω
阶跃函数:         ε ( t ) \varepsilon(t) ε(t)     ← → \leftarrow\rightarrow     π δ ( ω ) + 1 j ω {\pi\delta(\omega)+\frac{1}{j\omega}} πδ(ω)+jω1

性质:

线性:   a 1 f 1 ( t ) + a 2 f 2 ( t ) a_1f_1(t)+a_2f_2(t) a1f1(t)+a2f2(t)      ← → \leftarrow\rightarrow     a 1 F 1 ( ω ) + a 2 F 2 ( ω ) a_1F_1(\omega)+a_2F_2(\omega) a1F1(ω)+a2F2(ω)

对称性:   F ( t ) F(t) F(t)      ← → \leftarrow\rightarrow     2 π f ( − ω ) 2\pi f(-\omega) 2πf(ω)

尺度变换:   f ( a t ) f(at) f(at)      ← → \leftarrow\rightarrow     1 ∣ a ∣ F ( j ω a ) \frac{1}{|a|}F(j\frac{\omega}{a}) a1F(jaω)

虚实特性:   F ( ω ) = R ( ω ) + j X ( ω ) , R ( ω ) 偶 , X ( ω ) 奇 F(\omega)=R(\omega)+jX(\omega),R(\omega)偶,X(\omega)奇 F(ω)=R(ω)+jX(ω),R(ω),X(ω)     
             f ( t ) 实 偶 , F ( ω ) 实 偶 ; f ( t ) 实 奇 , F ( ω ) 虚 奇 f(t)实偶,F(\omega)实偶;f(t)实奇,F(\omega)虚奇 f(t)F(ω)f(t)F(ω)

位移:时移: f ( t − t 0 ) f(t-t_0) f(tt0) ← → \leftarrow\rightarrow F ( j ω ) e − j ω t 0 = > F(j\omega)e^{-j\omega t_0}=> F(jω)ejωt0=> δ ( t − t 0 ) \delta(t-t_0) δ(tt0) ← → \leftarrow\rightarrow e − j ω t 0 e^{-j\omega t_0} ejωt0
      频移: f ( t ) e j ω 0 t f(t)e^{j\omega_0 t} f(t)ejω0t ← → \leftarrow\rightarrow F [ j ( ω − ω 0 ) ] = > F[j(\omega-\omega _0)] => F[j(ωω0)]=> e j ω 0 t e^{j\omega_0 t} ejω0t ← → \leftarrow\rightarrow 2 π δ ( ω − ω 0 ) 2\pi\delta(\omega-\omega _0) 2πδ(ωω0)

==> { c o s ω 0 t = 1 2 ( e j ω t + e − j ω t ) s i n ω 0 t = 1 2 j ( e j ω t − e j ω t ) = > { f ( t ) c o s ( ω 0 t ) ← → 1 2 [ F ( ω − ω 0 ) + F ( ω + ω 0 ) ] f ( t ) s i n ( ω 0 t ) ← → 1 2 j [ F ( ω − ω 0 ) + F ( ω + ω 0 ) ] \begin{cases} {}cos\omega_0 t =\frac{1}{2}(e^{j\omega t}+e^{-j\omega t})\\{sin\omega_0 t =\frac{1}{2j}(e^{j\omega t}-e^{j\omega t})} \end{cases}=>\begin{cases} {f(t)cos(\omega_0 t)\leftarrow\rightarrow\frac{1}{2}[F(\omega-\omega_0)+F(\omega+\omega_0)]}\\ {f(t)sin(\omega_0 t) \leftarrow\rightarrow \frac{1}{2j}[F(\omega-\omega_0)+F(\omega+\omega_0)]} \end{cases} {cosω0t=21(ejωt+ejωt)sinω0t=2j1(ejωtejωt)=>{f(t)cos(ω0t)21[F(ωω0)+F(ω+ω0)]f(t)sin(ω0t)2j1[F(ωω0)+F(ω+ω0)]

==> { c o s ω 0 t ← → π [ δ ( ω − ω 0 ) + δ ( ω + ω 0 ) ) ] s i n ω 0 t ← → π j [ δ ( ω − ω 0 ) − δ ( ω + ω 0 ) ) ] \begin{cases} {cos\omega_0t \leftarrow\rightarrow \pi [\delta(\omega-\omega_0)+\delta(\omega+\omega_0))] }\\ {sin\omega_0t \leftarrow\rightarrow \frac{\pi}{j} [\delta(\omega-\omega_0)-\delta(\omega+\omega_0))]}\end{cases} {cosω0tπ[δ(ωω0)+δ(ω+ω0))]sinω0tjπ[δ(ωω0)δ(ω+ω0))]

调 制 定 理 : 若 信 号 f ( t ) 乘 以 c o s ω 0 t 或 s i n ω 0 t , 等 效 于 f ( t ) 的 频 谱 一 分 为 二 , 沿 数 轴 向 左 或 向 右 各 平 移 ω 0 调制定理:若信号f(t)乘以cos\omega_0t或sin\omega_0t,等效于f(t)的频谱一分为二,沿数轴向左或向右各平移\omega_0 f(t)cosω0tsinω0tf(t)沿ω0

推导:

f ( t ) ⋅ C o s ( ω 0 t ) f(t)\cdot Cos(\omega_0t) f(t)Cos(ω0t)
傅里叶变换:
1 2 π F ( j ω ) ∗ π [ δ ( ω + ω 0 ) + δ ( ω − ω 0 ) ) ] \frac{1} {2\pi}F(j\omega)*\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0))] 2π1F(jω)π[δ(ω+ω0)+δ(ωω0))]
= 1 2 F ( j ω ) ∗ δ ( ω + ω 0 ) + 1 2 F ( j ω ) ∗ δ ( ω − ω 0 ) \frac{1}{2}F(j\omega)*\delta(\omega+\omega_0)+\frac{1}{2}F(j\omega)*\delta(\omega-\omega_0) 21F(jω)δ(ω+ω0)+21F(jω)δ(ωω0)
由冲激函数性质 f ( t ) ∗ δ ( t − t 0 ) = f ( t − t 0 ) f(t)*\delta(t-t_0)=f(t-t_0) f(t)δ(tt0)=f(tt0)
= 1 2 F ( j ( ω + ω 0 ) ) + 1 2 F ( j ( ω − ω 0 ) \frac{1}{2}F(j(\omega+\omega_0))+\frac{1}{2}F(j(\omega-\omega_0) 21F(j(ω+ω0))+21F(j(ωω0)

卷积:时域卷积: f 1 ( t ) ∗ f 2 ( t ) ← → F 1 ( ω ) ⋅ F 2 ( ω ) f_1(t)*f_2(t) \leftarrow\rightarrow F_1(\omega)\cdot F_2(\omega) f1(t)f2(t)F1(ω)F2(ω)

      频域卷积: f 1 ( t ) ⋅ f 2 ( t ) ← → 1 2 π F 1 ( ω ) ∗ F 2 ( ω ) f_1(t)\cdot f_2(t) \leftarrow\rightarrow \frac{1}{2\pi}F_1(\omega)*F_2(\omega) f1(t)f2(t)2π1F1(ω)F2(ω)

微积分:时域: { 微 分 : d f ( t ) d t ← → j ω F ( j ω ) 积 分 : ∫ − ∞ t f ( τ ) d τ ← → 1 j ω F ( j ω ) + π F ( 0 ) δ ( i k ω ) \begin{cases} {微分:\frac{df(t)}{dt} \leftarrow\rightarrow j\omega F(j\omega )}\\{积分:\int_{-\infty}^{t} f(\tau)d\tau \leftarrow\rightarrow \frac{1}{j\omega} F(j\omega)+\pi F(0)\delta(ik\omega)} \end{cases} {:dtdf(t)jωF(jω):tf(τ)dτjω1F(jω)+πF(0)δ(ikω)

        频域: { 微 分 : − j t f ( t ) ← → d F ( j ω ) d ω 积 分 : f ( t ) − j t ← → ∫ − ∞ ω F ( x ) d x \begin{cases} {微分:-jtf(t) \leftarrow\rightarrow \frac{dF(j\omega)}{d\omega}}\\ {积分:\frac{f(t)}{-jt} \leftarrow\rightarrow \int_{-\infty}^{\omega}F(x)dx} \end{cases} {:jtf(t)dωdF(jω):jtf(t)ωF(x)dx



欧拉公式:
e j θ = c o s θ + j s i n θ e^{j\theta}=cos\theta+jsin\theta ejθ=cosθ+jsinθ

= = > { e j ω t = c o s ω t + j s i n ω t e − j ω t = c o s ω t − j s i n ω t ==>\begin{cases} {e^{j\omega t}=cos\omega t+jsin\omega t}\\{e^{-j\omega t}=cos\omega t-jsin\omega t} \end{cases} ==>{ejωt=cosωt+jsinωtejωt=cosωtjsinωt

= = > { c o s ( n ω t ) = e j n ω t + e − j n ω t 2 s i n ( n ω t ) = e j n ω t − e − j n ω t 2 j ==>\begin{cases} {cos(n\omega t)=\frac{e^{jn\omega t}+e^{-jn\omega t}}{2}}\\ {sin(n\omega t)=\frac{e^{jn\omega t}-e^{-jn\omega t}}{2j}} \end{cases} ==>{cos(nωt)=2ejnωt+ejnωtsin(nωt)=2jejnωtejnωt

阶跃信号和冲激信号:

冲激函数:
   加权特性: f ( t ) δ ( t ) = f ( 0 ) δ ( t ) , f ( t ) δ ( t − t 0 ) = f ( t 0 ) δ ( t − t 0 ) f(t)\delta(t)=f(0)\delta(t),f(t)\delta(t-t_0)=f(t_0)\delta(t-t_0) f(t)δ(t)=f(0)δ(t),f(t)δ(tt0)=f(t0)δ(tt0)
   抽样特性: ∫ − ∞ ∞ f ( t ) δ ( t ) d t = ∫ − ∞ ∞ f ( 0 ) δ ( t ) d t = f ( 0 ) \int_{-\infty}^{\infty}f(t)\delta(t)dt=\int_{-\infty}^{\infty}f(0)\delta(t)dt=f(0) f(t)δ(t)dt=f(0)δ(t)dt=f(0)
           ∫ − ∞ ∞ f ( t ) δ ( t − t 0 ) d t = f ( t 0 ) \int_{-\infty}^{\infty}f(t)\delta(t-t_0)dt=f(t_0) f(t)δ(tt0)dt=f(t0)
   尺度变换: δ ( a t ) = 1 ∣ a ∣ δ ( t ) , δ ( a t − t 0 ) = 1 ∣ a ∣ δ ( t − t 0 a ) \delta(at)=\frac{1}{|a|}\delta(t),\delta(at-t_0)=\frac{1}{|a|}\delta(t-\frac{t_0}{a}) δ(at)=a1δ(t),δ(att0)=a1δ(tat0)

冲激偶:
   抽样特性: ∫ − ∞ ∞ f ( t ) δ ′ ( t ) d t = f ( t ) δ ( t ) ∣ − ∞ ∞ − ∫ − ∞ ∞ δ ( t ) f ′ ( t ) d t = \int_{-\infty}^{\infty}f(t)\delta{\prime}(t)dt=\left. f(t)\delta(t) \right| _{-\infty}^{\infty}-\int_{-\infty}^{\infty}\delta(t) f\prime(t)dt= f(t)δ(t)dt=f(t)δ(t)δ(t)f(t)dt= − ∫ − ∞ ∞ δ ( t ) f ′ ( 0 ) d t = − f ′ ( 0 ) -\int_{-\infty}^{\infty}\delta(t)f{\prime}(0)dt=-f{\prime}(0) δ(t)f(0)dt=f(0)
   加权特性: f ( t ) δ ′ ( t ) = f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) f(t)\delta{\prime}(t)=f(0)\delta{\prime}(t)-f{\prime}(0)\delta(t) f(t)δ(t)=f(0)δ(t)f(0)δ(t)
              f ( t ) δ ′ ( t − t 0 ) = f ( t 0 ) δ ′ ( t − t 0 ) − f ′ ( t 0 ) δ ( t − t 0 ) f(t)\delta{\prime}(t-t_0)=f(t_0)\delta{\prime}(t-t_0)-f{\prime}(t_0)\delta(t-t_0) f(t)δ(tt0)=f(t0)δ(tt0)f(t0)δ(tt0)

卷积运算: f ( t ) = f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ ∞ f 1 ( τ ) f 2 ( t − τ ) d τ f(t)=f_1(t)*f_2(t)=\int_{-\infty}^{\infty}f_1(\tau)f_2(t-\tau)d\tau f(t)=f1(t)f2(t)=f1(τ)f2(tτ)dτ

性质:微分: f ( t ) = f 1 ′ ( t ) ∗ f 2 ( t ) = f 1 ( t ) ∗ f 2 ′ ( t ) f(t)=f_1{\prime}(t)*f_2(t)=f_1(t)*f_2{\prime}(t) f(t)=f1(t)f2(t)=f1(t)f2(t)
      积分: f − 1 ( t ) = f 1 − 1 ( t ) ∗ f 2 ( t ) = f 1 ( t ) ∗ f 2 − 1 ( t ) f^{-1}(t)=f_1^{-1}(t)*f_2(t)=f_1(t)*f_2^{-1}(t) f1(t)=f11(t)f2(t)=f1(t)f21(t)
      微积分: f ( t ) = f 1 − 1 ( t ) ∗ f 2 ′ ( t ) = f 1 ( t ) ∗ f 2 ( t ) f(t)=f_1^{-1}(t)*f_2{\prime}(t)=f_1(t)*f_2(t) f(t)=f11(t)f2(t)=f1(t)f2(t)
      =======> f ( i ) ( t ) = f 1 ( j ) ( t ) ∗ f 2 ( i − j ) ( t ) f^{(i)}(t)=f_1^{(j)}(t)*f_2^{(i-j)}(t) f(i)(t)=f1(j)(t)f2(ij)(t)
      交换律: f 1 ( t ) ∗ f 2 ( t ) = f 2 ( t ) ∗ f 1 ( t ) f_1(t)*f_2(t)=f_2(t)*f_1(t) f1(t)f2(t)=f2(t)f1(t)
      分配律: f 1 ( t ) ∗ [ f 2 ( t ) + f 3 ( t ) ] = f 1 ( t ) ∗ f 2 ( t ) + f 1 ( t ) ∗ f 3 ( t ) f_1(t)\ast [f_2(t)+f_3(t)]=f_1(t)\ast f_2(t)+f_1(t)\ast f_3(t) f1(t)[f2(t)+f3(t)]=f1(t)f2(t)+f1(t)f3(t)
        = = > ==> ==> 并 联 系 统 h ( t ) = h 1 ( t ) + h 2 ( t ) 并联系统h(t)=h_1(t)+h_2(t) h(t)=h1(t)+h2(t)
      结合律: [ f 1 ( t ) ∗ f 2 ( t ) ] ∗ f 3 ( t ) = f 1 ( t ) ∗ [ f 2 ( t ) ∗ f 3 ( t ) ] [f_1(t)\ast f_2(t)]\ast f_3(t)=f_1(t)\ast [f_2(t)\ast f_3(t)] [f1(t)f2(t)]f3(t)=f1(t)[f2(t)f3(t)]
        = = > ==> ==> 串 联 系 统 h ( t ) = h 1 ( t ) ∗ h 2 ( t ) 串联系统h(t)=h_1(t)*h_2(t) h(t)=h1(t)h2(t)

与冲激函数、冲激偶、阶跃函数
      冲激函数 δ ( t ) \delta(t) δ(t) f ( t ) ∗ δ ( t ) = f ( t ) f(t)*\delta(t)=f(t) f(t)δ(t)=f(t)
                       f ( t ) ∗ δ ( t − t 0 ) = f ( t − t 0 ) f(t)*\delta(t-t_0)=f(t-t_0) f(t)δ(tt0)=f(tt0)
                            f ( t − t 1 ) ∗ δ ( t − t 2 ) = f ( t − t 2 ) ∗ δ ( t − t 1 ) = f ( t − t 1 − t 2 ) f(t-t_1)\ast \delta(t-t_2)=f(t-t_2)\ast \delta(t-t_1) =f(t-t_1-t_2) f(tt1)δ(tt2)=f(tt2)δ(tt1)=f(tt1t2)
      冲激偶 δ ′ ( t ) \delta{\prime}(t) δ(t) f ( t ) ∗ δ ′ ( t ) = f ′ ( t ) ∗ δ ( t ) = f ′ ( t ) f(t)*\delta{\prime}(t)=f{\prime}(t)*\delta(t)=f{\prime}(t) f(t)δ(t)=f(t)δ(t)=f(t)
                   f ( t ) ∗ δ ′ ′ ( t ) = f ′ ′ ( t ) ∗ δ ( t ) = f ′ ′ ( t ) f(t)*\delta{\prime\prime}(t)=f{\prime\prime}(t)*\delta(t)=f{\prime\prime}(t) f(t)δ(t)=f(t)δ(t)=f(t)
      阶跃函数 ε ( t ) \varepsilon(t) ε(t) f ( t ) ∗ ε ( t ) = f ( t ) ∗ δ − 1 ( t ) = f − 1 ( t ) = ∫ − ∞ t f ( τ ) d τ f(t)*\varepsilon(t)=f(t)*\delta^{-1}(t)=f^{-1}(t)=\int_{-\infty}^{t}f(\tau)d\tau f(t)ε(t)=f(t)δ1(t)=f1(t)=tf(τ)dτ
                   f ( t ) ∗ ε ( t − t 0 ) = ∫ − ∞ t f ( τ − τ 0 ) d τ = ∫ − ∞ t − t 0 f ( τ ) d τ f(t)*\varepsilon(t-t_0)=\int_{-\infty}^{t}f(\tau-\tau_0)d\tau=\int_{-\infty}^{t-t_0}f(\tau)d\tau f(t)ε(tt0)=tf(ττ0)dτ=tt0f(τ)dτ
(与阶跃函数卷积就是变上限积分,阶跃函数是个理想的积分器)

时移特性: f 1 ( t − t 1 ) ∗ f 2 ( t − t 2 ) = f ( t − t 1 − t 2 ) f_1(t-t_1)*f_2(t-t_2)=f(t-t_1-t_2) f1(tt1)f2(tt2)=f(tt1t2)

  • 49
    点赞
  • 183
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LLC小信号傅里叶变换是一种常见的信号处理技术,用于将一个信号在频域上进行分析和处理。下面是LLC小信号傅里叶变换的详细推导公式: 假设我们有一个输入信号x(t),该信号可以被表示为一个傅里叶级数的形式: x(t) = Σ(an * cos(nω0t) + bn * sin(nω0t)) 其中,an和bn是信号的频谱系数,ω0是信号的基频。 假设我们对这个信号做一个小的变化δx(t),这个变化可以表示为: δx(t) = Σ(δan * cos(nω0t) + δbn * sin(nω0t)) 我们将δx(t)代入某个系统的输入端,然后通过线性时不变的系统得到输出信号y(t)。输出信号可以表示为: y(t) = Σ(cn * cos(nω0t) + dn * sin(nω0t)) 其中,cn和dn是输出信号的频谱系数。 利用傅里叶变换的性质,将输入信号和输出信号进行傅里叶变换得到它们的频谱表示: X(ω) = Σ(An * exp(jnω0t)) Y(ω) = Σ(Cn * exp(jnω0t)) 其中,An和Cn是输入信号和输出信号傅里叶系数。 我们可以得到输入信号和输出信号的频谱差异: δX(ω) = X(ω) - X(ω0) (将X(ω0t)按照小信号处理) δY(ω) = Y(ω) - Y(ω0) (将Y(ω0t)按照小信号处理) 在LLC小信号傅里叶变换中,我们主要关注输出信号的频谱变化,因此可以得到以下公式: δY(ω) ≈ H(ω) * δX(ω) 其中,H(ω)是系统的传递函数,表示在频率ω处输出与输入的变化关系。这个公式可以用来分析系统的频率响应以及进行信号的频域分析。 总结来说,LLC小信号傅里叶变换通过线性化处理信号,并将其表示为频谱系数的形式,从而实现了对信号在频域上的分析和处理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值