四、线性支持向量机算法(LinearSVC,Linear Support Vector Classification)(有监督学习)

本文介绍了线性支持向量机LinearSVC,其基于liblinear库,具有灵活的惩罚和损失函数选择。文章详细解释了算法原理,参数解释,包括penalty(如L1和L2正则化),loss函数(如hinge和squared_hinge),以及如何在sklearn库中使用这些参数进行模型训练和评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性支持向量机,Linear Support Vector Classification.
与参数内核为线性的SVC类似(SVC(kernel=‘linear’)),但使用liblinear而非libsvm实现,因此在选择惩罚和损失函数时更具灵活性,并能更好地扩展到大量样本

SVC(kernel=’linear’)LinearSVC()是类似的,只不过LinearSVC()是通过liblinear实现的;而SVC(kernel=’linear’)通过libsvm实现的;相较于SVC(kernel=’linear’),LinearSVC)(在选择惩罚和损失函数时更具灵活性,并能更好地扩展到大量样本

一、算法思路

本质都是SVM中的一种优化,原理都类似,详细算法思路可以参考博文:三、支持向量机算法(SVC,Support Vector Classification)(有监督学习)

二、官网API

官网API

class sklearn.svm.LinearSVC(penalty='l2', loss='squared_hinge', *, dual='warn', tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000)

这里的参数还是比较多的,具体的参数使用,可以根据官网给的demo进行学习,多动手尝试;这里就以一些常用的参数进行说明。
导包:from sklearn.svm import LinearSVC

①惩罚项penalty

惩罚项的选择,指定惩罚中使用的规范
l2惩罚是SVC使用的标准,l1会导致coef_向量稀疏
正则化说白了就是对损失函数的一种约束限制

在线性回归中,L1正则化也称为Lasso回归,可以产生稀疏模型
在线性回归中,L2正则化也称为Ridge回归,可以获得很小的参数,防止过拟合
指定惩罚中使用的规范。l2 “惩罚是 SVC 使用的标准。l1” 会导致 coef_ 向量稀疏。

l1’:添加L1正则化
l2’:添加L2正则化,默认,L2正则化是SVC的使用标准
SVC()中可以选择None,而LinearSVC()中没有

具体官网详情如下:
在这里插入图片描述

使用方式

LinearSVC(penalty='l2')

②损失函数loss

loss,指定损失函数
hinge是标准SVM损失函数(如SVC类使用,而squared_hinge是hinge损失函数的平方

不支持 penalty=‘l1’ 和 loss=‘hinge’ 的组合
因为penalty='l2’是SVC的使用标准,loss='hinge’是标准SVM损失函数,只有这样配套的才可以搭配使用

hinge’:标准SVM损失函数
squared_hinge’:hinge损失函数的平方

具体官网详情如下:
在这里插入图片描述

使用方式

LinearSVC(loss='squared_hinge')

③正则化参数C

正则化强度与C成反比,惩罚是L2正则化的平方,C是一个浮点数类型

具体官网详情如下:
在这里插入图片描述

使用方式

LinearSVC(C=2.0)

④dual

是否选择解决对偶或原始优化问题的算法,默认为True

auto”:将根据 n_samples、n_features、loss、multi_class 和 penalty 的值自动选择参数值
如果 n_samples < n_features,且优化器支持选择 loss、multi_class 和 penalty,那么 dual 将设为 True,否则设为 False

具体官网详情如下:
在这里插入图片描述

⑤随机种子random_state

如果要是为了对比,需要控制变量的话,这里的随机种子最好设置为同一个整型数

具体官网详情如下:
在这里插入图片描述

使用方式

LinearSVC(random_state=42)

⑤最终构建模型

LinearSVC(penalty=‘l2’,loss=‘squared_hinge’,C=2.0,random_state=42)

三、代码实现

①导包

这里需要评估、训练、保存和加载模型,以下是一些必要的包,若导入过程报错,pip安装即可

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import joblib
%matplotlib inline
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

②加载数据集

数据集可以自己简单整个,csv格式即可,我这里使用的是6个自变量X和1个因变量Y
在这里插入图片描述

fiber = pd.read_csv("./fiber.csv")
fiber.head(5) #展示下头5条数据信息

在这里插入图片描述

③划分数据集

前六列是自变量X,最后一列是因变量Y

常用的划分数据集函数官网API:train_test_split
在这里插入图片描述
test_size:测试集数据所占比例
train_size:训练集数据所占比例
random_state:随机种子
shuffle:是否将数据进行打乱
因为我这里的数据集共48个,训练集0.75,测试集0.25,即训练集36个,测试集12个

X = fiber.drop(['Grade'], axis=1)
Y = fiber['Grade']

X_train, X_test, y_train, y_test = train_test_split(X,Y,train_size=0.75,test_size=0.25,random_state=42,shuffle=True)

print(X_train.shape) #(36,6)
print(y_train.shape) #(36,)
print(X_test.shape) #(12,6)
print(y_test.shape) #(12,)

④构建LinearSVC模型

参数可以自己去尝试设置调整

lsvc = LinearSVC(penalty='l2',loss='squared_hinge',C=2.0,random_state=42)

⑤模型训练

就这么简单,一个fit函数就可以实现模型训练

lsvc.fit(X_train,y_train)

⑥模型评估

把测试集扔进去,得到预测的测试结果

y_pred = lsvc.predict(X_test)

看看预测结果和实际测试集结果是否一致,一致为1否则为0,取个平均值就是准确率

accuracy = np.mean(y_pred==y_test)
print(accuracy)

也可以通过score得分进行评估,计算的结果和思路都是一样的,都是看所有的数据集中模型猜对的概率,只不过这个score函数已经封装好了,当然传入的参数也不一样,需要导入accuracy_score才行,from sklearn.metrics import accuracy_score

score = lsvc.score(X_test,y_test)#得分
print(score)

⑦模型测试

拿到一条数据,使用训练好的模型进行评估
这里是六个自变量,我这里随机整个test = np.array([[16,18312.5,6614.5,2842.31,25.23,1147430.19]])
扔到模型里面得到预测结果,prediction = lsvc.predict(test)
看下预测结果是多少,是否和正确结果相同,print(prediction)

test = np.array([[16,18312.5,6614.5,2842.31,25.23,1147430.19]])
prediction = lsvc.predict(test)
print(prediction) #[2]

⑧保存模型

lsvc是模型名称,需要对应一致
后面的参数是保存模型的路径

joblib.dump(lsvc, './lsvc.model')#保存模型

⑨加载和使用模型

lsvc_yy = joblib.load('./lsvc.model')

test = np.array([[11,99498,5369,9045.27,28.47,3827588.56]])#随便找的一条数据
prediction = lsvc_yy.predict(test)#带入数据,预测一下
print(prediction) #[4]

完整代码

模型训练和评估,不包含⑧⑨。

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import joblib
%matplotlib inline
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

fiber = pd.read_csv("./fiber.csv")
# 划分自变量和因变量
X = fiber.drop(['Grade'], axis=1)
Y = fiber['Grade']
#划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, Y, random_state=0)

lsvc = LinearSVC(penalty='l2',loss='squared_hinge',C=2.0,random_state=42)
lsvc.fit(X_train,y_train)

y_pred = lsvc.predict(X_test)
accuracy = np.mean(y_pred==y_test)
print(accuracy)
score = lsvc.score(X_test,y_test)#得分
print(score)

test = np.array([[16,18312.5,6614.5,2842.31,25.23,1147430.19]])
prediction = lsvc.predict(test)
print(prediction) #[2]
### LinearSVC 模型概述 `LinearSVC` 是一种用于二分类的支持向量机Support Vector Machine, SVM)实现,基于线性核函数。它通过寻找最优的超平面来分割不同类别的数据点,并使分类间隔最大化[^4]。 #### 参数配置说明 以下是 `LinearSVC` 的主要参数及其作用: - **labelCol**: 表示标签列名,默认值为 `"label"`。 - **featuresCol**: 特征列名,默认值为 `"features"`。 - **maxIter**: 设置最大迭代次数,控制模型训练的时间复杂度和精度。默认值通常为 100。 - **regParam**: 正则化参数 λ,用于防止过拟合。取值范围一般在 `[0.01, 1.0]` 之间,具体取决于数据集特性。 - **fitIntercept**: 是否计算截距项,默认为 `True`。 - **standardization**: 是否对特征进行标准化处理,默认为 `True`。 - **weightCol**: 权重列名,可选参数,用于指定样本权重。 - **aggregationDepth**: 控制分区聚合深度,影响性能优化,默认值为 2。 这些参数可以根据实际需求调整以获得更好的泛化能力或更快的收敛速度[^2]。 #### 示例代码 以下是一个完整的 `LinearSVC` 训练流程示例,包括数据准备、模型构建以及预测部分: ```python from pyspark.ml.classification import LinearSVC from pyspark.ml.feature import StringIndexer, VectorAssembler from pyspark.sql import SparkSession # 初始化 Spark Session spark = SparkSession.builder.appName("LinearSVCExample").getOrCreate() # 创建模拟数据 data = [(0.7, "A"), (0.8, "B"), (0.4, "A"), (0.9, "B")] columns = ["feature", "category"] df = spark.createDataFrame(data, schema=columns) # 将类别转换为索引形式 indexer = StringIndexer(inputCol="category", outputCol="indexedLabel") indexed_df = indexer.fit(df).transform(df) # 转换特征列为向量形式 assembler = VectorAssembler(inputCols=["feature"], outputCol="indexedFeatures") final_data = assembler.transform(indexed_df) # 构建 LinearSVC 模型 svm = LinearSVC( labelCol="indexedLabel", featuresCol="indexedFeatures", maxIter=10, regParam=0.1 ) # 训练模型 model = svm.fit(final_data) # 输出系数与截距 print(f"Coefficients: {model.coefficients}") print(f"Intercept: {model.intercept}") # 预测新数据 predictions = model.transform(final_data) predictions.select("prediction", "indexedLabel", "indexedFeatures").show() ``` 此代码展示了如何利用 PySpark 实现一个简单的线性支持向量机分类器。 ### 性能评估指标 为了衡量 `LinearSVC` 模型的表现,可以采用多种评价标准,例如准确率、召回率、F1 值等。如果关注回归问题,则可能涉及均方误差(MSE)、平均绝对误差(MAE)或者中位数绝对误差(Median Absolute Error)。后者尤其适用于异常值较多的数据场景[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

beyond谚语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值