论文选题

论文选题

选题的目的是为了确定论文的研究目标和写作范围,所要表达的主要观点或主题;
不同的研究方向对于每个初步进入研究领域的人来说都是铁板一块,重要的是不要三心二意,定了一个题研究方向后,就至始至终的做下去;所以最重要的是选好研究课题;
如何选好题呢?
采用棋盘法

1 棋盘法

棋盘法是一种很有效的方法,能够清晰而有条理地刻画出研究工作的大体脉络,从而见缝插针地找到新的研究课题
如果导师不管你,自己从看论文开始做起
注意:不要从最老的看起,而是从最新的开始看起

如图所示,4x4棋盘,
横轴代表相应的研究领域用到的不同方法、方案和技术(锤子);
纵轴表示要解决的研究问题(钉子),或者说潜在的研究问题。
具有相关性的研究问题要按照顺序排放,无相关性的研究问题可以随便摆放。
在这里插入图片描述

2 举个列子

以代价敏感学习为例:
代价敏感学习是考虑在计算机的学习过程中,如何最小化各种错误代价的总和。从数据中学习出的模型也会出现各种类型的错误,要想降低错误率,就要付出各种代价,代价敏感学习关心的是如何使得各种代价的总和最小。这个研究问题对于解决数据的不平衡性很重要。
首先将这个问题拆解为以下几个更小的问题:

  • 代价已知的代价敏感学习
  • 代价未知的代价敏感学习,
  • 代价伴随着未知数据获取的代价敏感学习,
  • 流数据的代价敏感学习。

在横轴上,也就是方法维度,有贝叶斯方法,集成方法,密度比例方法,基于树的方法以及在线学习方法等。

3 用棋盘法分析

在这里插入图片描述
通过文献调研,开始往棋盘里面放棋子。每一个格子放一篇或者多篇论文,如果是多篇论文,那么这些论文所讨论的研究问题和使用的方法应该是相似的。文献检索后,我们可以发现棋盘上有些格子空空的,这个是好消息,表示还没有人关注。
先看格子(3,3),这个空格子提供给研究者一个非常好的练手机会,可以将标号为[3]的方法应用到问题[3]。
从上面的图可以看到方法3解决了问题1,2,问题1,2已经告诉了你如何应用方法三去解决问题了;用方法三去解决问题3就成了一道练习题了;

如果决定用方法3解决问题3,那论文1,2就要好好看看了,好好学一下方法3是如何解决问题1,2的,就把方法三学到手了 ,然后利用方法3尝试解决问题3;可能不是一帆风顺的,运气好可能一下子解决了;这样的文章质量不高,没有创新,只是解决了问题;如果一下子解决不了 ,这是个好消息,也是个坏消息,想办法修改方法3,解决了问题3;这个就可以发个好文章;
不要抱着高中考大学的思维来做科研;用到啥学啥,不是都准备好了再做 ;
棋盘法很快能够找到目标;

4 棋盘法总结

进一步,从棋盘法角度去思考,学术研究是利用出现的空格子寻找新的问题或者新的解决方法。年轻的研究者可以在这些空格中找到属于自己的一片天地,或者已然如专家一般影响其他研究者。这时,可以说他们已经成功地建立了个人品牌。
沿着棋盘的横轴走,

  • 延着棋盘的横轴方向走,用不同的方法解决同一个问题,在研究中,能发现很多有意思的研究话题;
  • 延着棋盘的纵轴走,采用自上而下的考察方式,我们用相同的 方法去解决不同的研究问题,这种方式会引导我们考虑为什么以及如何能够把相同的方法应用于不同的研究问题。如果已经 对所在的研究领域一些研究方法了如指掌,可能会看到比其他 人所看到的更加亮丽的景观。

“如果你手上有一把锤子,所有的东西看上去都像钉子.”

在两个方向游走,扩展,我们可以挖掘到一个金矿,并可以将所有研究成果形成一个完整的毕业论文或者写一本专著。

5 研究整个过程的例子

  • A研究者确定了迁移学习研究领域,
    列出了以下几个迁移学习的研究问题:

相同特征空间数据间的知识迁移,
不同特征空间数据间的知识迁移,
不平衡数据间的知识迁移
具备多个辅助领域的知识迁移。

在方法维度上,

基于实例的知识迁移,
基于特征的知识迁移,
集成多个模型的知识迁移
多个学习任务间的知识迁移。

填入棋盘后,发现用多个学习任务之间的知识迁移解决不同特征空间数据间的知识迁移这一问题值得尝试。

  • C研究者,对实际工业应用和创业有兴趣,决定研究推荐系统这个领域。
    经过文献调研,推荐系统还有如下几个问题:

基于密集矩阵的推荐,
基于稀疏矩阵的推荐,
使用用户和商品的外部本体进行推荐
带有时间信息的演化推荐。

在方法维度上,有3种方法:

基于用户推荐方法,
基于产品的推荐方法,
基于模型的推荐方法。

填入棋盘后,C研究者发现使用“基于模型的推荐方法”解决“带有时间信息的演化推荐”问题格子还是空的。

6 课程案例分析

《基于在线股评的股票趋势分析》
把论文看了后,
已有问题:

股指关系;
单个股票价格关系;
行业股票关系

自己挖掘 :

具体一段时间后股票价格相关分析;
如何设计情感指数,
情感指数与股价关系;等

测量指标 《---- 也是数据特征提取方法
在研究分析互联网股票在线评论活动与股票市场关系的过程中,本文借鉴相关研究中常用的一些指标作为对中国股票市场、在线股评的测量,这些变量在大盘与个股的研究中都有涉及。

(1) 股市指数 本文采用上证综合指数进行分析。
(2) 股票交易量 股票交易日内股票成交数量,是手为单位。
(3) 波动率 测量股市指数、股票价格某一时间段内的波动情况,计算方法为:以天为例,当日股市指数(股价)最高与最低值之差除以开盘与收盘股市指数(股价)的平均值。
(4) 收益率 t 时刻收盘指数(股价)与t-1 时刻收盘指数(股价)之差与t-1 时刻值的百分比。
(5) 在线股评数量 互联网股票论坛中每日发表的帖子数量。在具体研究中,本文将前一日15 点到今日15 点之间的数据视为今日数据,并分别统计了前一日15 点到今日9 点30、今日9 点30 到今日15 点两个时间段的数据,以考察不同时间段的在线评论活动与股票市场的关系。45
(6) 情感指数 根据文本分类的结果计算而得,具体方法为:基于每条在线股
评信息的类别,看涨记为+1,看跌记为-1,其他记为0。而后按一定的时间间隔
对信息进行聚集得到情感指数。本文以天为单位汇总情感指数,同时,按前述
说明的两个时间段分别统计了情感指数。
(7) 情感差异(DIS) 描述股票论坛用户对股票市场的态度的差异程度,以
天为单位,计算方法如公式(4-1),其中,R 为交易日中看涨信息的数量,D
为看跌信息的数量。由该公式可以看出,情感差异的取值范围为0 到1 之间,
当情感差异值为0 时,表明投资者对股票市场的态度非常一致,一致看涨或者
一致看跌;而情感差异值越接近1,表明投资者对股票市场的态度越不一致。
在这里插入图片描述
文献检索如下:
在这里插入图片描述

可以看到研究方法要从看到的文章中进行总结;
在这里插入图片描述
画出棋盘图,可以看到用直接统计比例的方式来解决股指关系
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值