在刚开始学习图形学的时候,很多网上,某乎,百度的一致说图形学设涉及到的数学很多,让很多对图形学感兴趣,但是数学不好的同学望而却步。其实如果不是为了做科研工作,作为学习图形学,涉及到的数学部分并不是很多,而且也不是很难。用的最多的就是线性代数中很简单的部分。线性代数中难的部分作为学习图形学基本用不着。
在学习图形学的时候也完全没必要害怕。要用到的数学知识有:
- 向量的加法,点乘,叉乘,以及向量的规范化。这些向量的数学计算主要是为了模拟光线作用在物体的时候,如何反射,折射,散射。从而计算出每个物体每个顶点的颜色值或者每个像素的颜色值。
- 矩阵的乘积,矩阵的转置。这些矩阵的知识主要是为了转化空间和实现物体的各种变形。
在高级图形学中还会用到微积分和概率的部分知识,但是其复杂程度没有达到高数下册后部分。
- 微积分:在BRDF中使用。
- 概率:在路径追踪中使用
- 几何:曲线和曲面
在光栅化部分用到的数学知识也就是向量和矩阵这两个部分。初步学习完可以不学习微积分和概率部分。
除了数学外与图形学相关的重要的课程还有:
物理:光学,力学
其他涉及到的课程还有:信号处理,数值分析
1 向量
这一块高中学过了。在图形学中也使用的最多。
向量的加法,点乘和叉乘都有几何意义的计算方式和数学坐标系下的计算方式。这两个都需要很熟悉,更重的是要知道在图形学的用法。
1. 向量的加法
向量的加法的结果还是一个向量。
从几何的角度看向量的加法—高中知识

在坐标系中的向量加法—在以后的图形学中的计算都是用这个来计算向量的加法。这个计算向量的长度是非常方便的。

2. 向量的点乘Dot product
向量的点乘是一个数.。
向量点乘在图形学中的用法如下:
- 快速到找到两个向量之间的夹角:后面光照模型都是用点乘来计算光线,视线,物体法线之间的夹角都是用这个来计算的。
- 一个向量投影到另外一个向量上是什么样子的:分解向量:垂直和水平。
- 计算两个向量方向的接近程度:根据点乘的结果来判断是接近和远离;比如在高光渲染的时候就要用这个知识
- 向量点乘还可以给出一个前与后的信息:如果落在了上半圆就是接近,如果落在了下半圆就是远离。根据点乘的符号来判断,如果是正的,结果等于1就是相同,如果是-1是相向;

下面这张图中着色点的颜色都是利用v,n,l三个向量之间的点乘来计算的,具体可以结合代码看。

for (auto& light : lights)
{
// TODO: For each light source in the code, calculate what the *ambient*, *diffuse*, and *specular*
// components are. Then, accumulate that result on the *result_color* object.
//vector of light and eye.
Eigen::Vector3f lightDir=light.position-point;
lightDir=lightDir.normalized();
Eigen::Vector3f eyeDir=eye_pos-point;
// eyeDir=eyeDir.normalized();
//distance between light with point
Eigen::Vector3f lightDir_len=light.position-point;
// float r= lightDir_len.norm();
float r= sqrt(pow(lightDir_len[0],2)+pow(lightDir_len[1],2)+pow(lightDir_len[2],2));
Eigen::Vector3f halfVector=(lightDir+eyeDir).normalized();
//diffuse
Eigen::Vector3f diffuse=kd.cwiseProduct((light.intensity/(r*r))*MAX(0,normal.dot(lightDir)));
//ambient
Eigen::Vector3f ambient=ka.cwiseProduct(amb_light_intensity);
//specular
Eigen::Vector3f specular=ks.cwiseProduct((light.intensity/(r*r))*pow(MAX(0,normal.dot(halfVector)),p));
if (flag)
{
ambient= Eigen::Vector3f(0,0,0);
}
result_color += ambient+diffuse+specular;
flag=true;
点乘的数学计算如下:
-
几何角度:

-
坐标系角度

-
点乘的属性

3. 向量的叉乘
向量叉乘的结果还是一个向量,其方向用右手螺旋定则来确定。(或者左手定则)
openGL中使用的是左手坐标系。
1 叉乘在图形学中的用法:
- 判断一个向量是在另外一个向量的左边还是右边:
如下图:判断b在a的左边还是右边
用a叉乘b,得到的结果是正的,说明b在a的左侧
用b叉乘a,得到的结果是负的,说明b在a的右侧

- 判断一个点是否在三角形内部。光栅化的时候判断一个像素点是否在三角形内部,从而判断是否为其着色。
判断P在三角形ABC的内部?
ABXAP,结果是正的,说明P在AB的左侧
BCXBP,结果是正的,说明P在AB的左侧
CAXPC,结果是正的,说明P在CA的左侧
所以P在三角形ABC的内部,
绕的顺序是AB-BC-CA,绕向逆时针和顺时针,也就是三个叉乘结果要嘛都是正的,要嘛都是负的
这个是三角形光栅化的基础,要知道三角形覆盖了哪些像素,判断像素是否在三角形内部;

bool insideTriangle(int x, int y, const Triangle& t)
{
Eigen::Vector2f p(x,y);
Eigen::Vector2f A(t.v[0].x(),t.v[0].y());
Eigen::Vector2f B(t.v[1].x(),t.v[1].y());
Eigen::Vector2f C(

本文总结了现代图形学入门所需的全部数学知识,包括向量运算、矩阵变换、微积分、概率论、三角函数等内容,旨在帮助初学者理解图形学中数学的重要性及应用。
最低0.47元/天 解锁文章

1307

被折叠的 条评论
为什么被折叠?



