卷积神经网络(CNN)的发展经历了多个阶段和里程碑式的模型
卷积神经网络(CNN)的发展经历了多个阶段和里程碑式的模型。以下是卷积神经网络的历史发展概述:
1. LeNet-5(1998)
- 作者:Yann LeCun
- 特点:是最早的卷积神经网络之一,主要用于手写数字识别。
- 结构:包括卷积层、池化层和全连接层。
2. AlexNet(2012)
- 作者:Alex Krizhevsky、Ilya Sutskever、Geoffrey Hinton
- 特点:通过在ImageNet大规模视觉识别挑战赛(ILSVRC)上取得突破性成果,引发了深度学习在计算机视觉领域的复兴。
- 结构:包括多个卷积层、池化层、ReLU激活函数和全连接层。
3. ZFNet(2013)
- 作者:Matthew D. Zeiler、Rob Fergus
- 特点:是AlexNet的一个改进版本,提出了一种新的可视化方法,即Deconvolutional Networks。
- 结构:与AlexNet相似,但有细微的结构差异和优化。