名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》
创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)
杨立昆:卷积神经网络创始者,人工智能领路人
一、引言
在人工智能的发展历程中,有一些名字像璀璨的星辰,照亮了整个领域的前进道路。杨立昆(Yann LeCun)无疑是其中最耀眼的一颗。作为深度学习的奠基人之一,卷积神经网络(CNN)的创始人,2018年图灵奖的获得者,杨立昆的学术贡献和技术创新深刻地改变了人工智能的发展轨迹。
图片:杨立昆
从法国巴黎郊区的一个热爱电子和机械的少年,到纽约大学的杰出教授和Meta(原Facebook)的首席AI科学家,杨立昆的传奇人生如同他所创造的深度学习技术一样,充满了层次丰富的精彩故事。他的研究成果已经渗透到我们日常生活的方方面面,从智能手机的照片识别,到社交媒体的内容推荐,从语音助手的实时转录,到自动驾驶的计算机视觉系统。
图片:Meta AI
本文将带您走进杨立昆的世界,了解这位深度学习先驱的成长历程、核心贡献、最新研究方向,以及他对人工智能未来的独特见解。无论您是人工智能领域的从业者,还是对这个改变世界的技术充满好奇的普通读者,杨立昆的故事将为您打开一扇通往人工智能深度理解的大门。
二、早年生活与学术背景
1. 成长环境
杨立昆(Yann André Le Cun,后改为LeCun)1960年7月8日出生于法国,在巴黎郊区度过了童年和少年时期。他的父亲是一名工程师,对电子和机械的热爱深深影响了年幼的杨立昆。在成长过程中,他展现出对科学和工程的浓厚兴趣,同时也热衷于在乐队中演奏音乐。这种对技术与艺术的双重热爱,为他日后在人工智能领域的创新思维奠定了基础。
有趣的是,杨立昆对人工智能的兴趣最早可以追溯到他童年时观看的科幻电影《2001太空漫游》。电影中的智能计算机HAL深深吸引了他,启发他思考机器智能的可能性。这个童年的好奇心,最终引领他走上了人工智能研究的道路。
图片:《2001太空漫游》
2. 教育经历
杨立昆选择留在法国接受高等教育。1983年,他从法国的电子与电气工程高等学院(ESIEE Paris)获得了工程师文凭(相当于硕士学位)。他的早期研究重点是微芯片设计和自动化,这为他后来在神经网络硬件实现方面的工作打下了坚实基础。
随后,杨立昆在自己的本科学习期间就开始对机器学习进行独立研究,并将这一兴趣作为他博士研究的核心。1987年,他在巴黎第六大学(现索邦大学)获得了计算机科学博士学位。他的博士研究提出了神经网络反向传播学习算法的早期形式,这一算法后来成为深度学习的核心技术之一。
3. 学术启蒙
杨立昆的研究道路与另一位深度学习先驱杰弗里·欣顿(Geoffrey Hinton)有着惊人的相似之处。他们都被当时不太流行的神经网络方法所吸引,并且都发现了简单神经网络的局限性可以通过使用后来被称为"反向传播"的算法来克服,该算法可以有效地训练中间层的"隐藏"神经元。
1985年,一个在法国阿尔卑斯山勒乌什(Les Houches)举办的研讨会,首次让杨立昆与国际上从事相关研究的学术团体建立了直接联系。正是在这里,他遇到了特里·塞诺夫斯基(Terry Sejnowski),欣顿的密切合作者,当时他们关于反向传播的工作还未发表。
这段早期经历对杨立昆的学术发展产生了深远影响。1987年,在获得博士学位后,杨立昆前往多伦多大学,在杰弗里·欣顿的指导下进行了为期一年的博士后研究,这段经历进一步深化了他对神经网络和机器学习的理解。
三、职业生涯和重要贡献
1. 贝尔实验室时期
杨立昆职业生涯的转折点出现在1988年,当时他加入了AT&T贝尔实验室的自适应系统研究部门。在劳伦斯·雅克尔(Lawrence D. Jackel)的领导下,杨立昆开始了一系列开创性的研究工作。
在贝尔实验室期间,杨立昆开发了多种新的机器学习方法,其中最重要的是受生物学启发的图像识别模型—卷积神经网络(Convolutional Neural Networks,CNN)。这一创新技术后来成为深度学习领域的基石,也是他获得图灵奖的主要贡献之一。
图片:CNN示例
除了CNN,杨立昆还开发了"最优大脑损伤"(Optimal Brain Damage)正则化方法,以及图变换网络(Graph Transformer Networks)方法。后者与条件随机场类似,并被应用于手写识别和光学字符识别(OCR)系统中。
贝尔实验室的研究很快就转化为了实际应用。杨立昆帮助开发的银行支票识别系统在20世纪90年代末和21世纪初被NCR等公司广泛部署,处理了美国10%以上的支票。这是深度学习技术首次在大规模商业系统中成功应用的典范之一。
2. LeNet的发展
杨立昆最著名的贡献之一是LeNet系列卷积神经网络的开发。LeNet是一个专为手写和印刷文本识别而设计的神经网络架构,它采用了卷积操作来处理二维输入(如图像)。
从1989年开始,杨立昆和他的团队开发了LeNet的多个版本。早期版本如LeNet-1已经展示了卷积神经网络的潜力,但最成熟、最广为人知的是1998年发表的LeNet-5。LeNet-5具有完整的卷积神经网络架构,包括多个卷积层、池化层和全连接层,这一架构在当今的深度学习模型中仍然可以看到其影子。
图片:LeNet-5
LeNet系列的成功在于其能够自动学习识别手写字符的特征,而不需要手动设计特征提取器。通过使用共享权重的卷积核在输入图像上滑动,LeNet能够高效地检测位置不变的特征,这一特性对于识别手写字符至关重要。
LeNet-5能够以超过99%的准确率识别MNIST数据集中的手写数字,这在当时是一个令人印象深刻的成就。更重要的是,LeNet的设计理念为后来的深度学习模型奠定了基础,包括2012年在ImageNet挑战赛中取得突破的AlexNet。
3. 加入纽约大学与Meta
经过一段在NEC研究所(现为NEC-Labs America)的短暂任职后,杨立昆于2003年加入纽约大学(NYU),担任数学科学Courant研究所和神经科学中心的计算机科学和神经科学教授。他还在NYU的Tandon工程学院担任教授。
在NYU期间,杨立昆主要研究能量基模型(Energy-Based Models)在监督和非监督学习中的应用,计算机视觉中的特征学习,以及移动机器人技术。2012年,他成为NYU数据科学中心的创始主任。
2013年12月9日,杨立昆成为Meta AI研究院(当时称为Facebook AI Research)在纽约的首位主任,并于2014年初辞去了NYU数据科学中心主任职务。同年,他与约书亚·本吉奥共同创立了国际学习表示会议(International Conference on Learning Representations,ICLR),该会议采用了他之前在网站上倡导的出版后开放评审流程。
图片:Meta AI
目前,杨立昆在纽约大学担任Jacob T. Schwartz计算机科学讲席教授,同时也是Meta的副总裁兼首席AI科学家,继续引领着人工智能领域的前沿研究。
四、图灵奖与学术荣誉
1. 2018年图灵奖
2018年,计算机科学领域的最高荣誉——图灵奖(Turing Award)授予了杨立昆、约书亚·本吉奥和杰弗里·欣顿三位科学家,以表彰他们在深度学习领域做出的开创性贡献。三人共同分享了100万美元的奖金,并被称为"人工智能的教父"或"深度学习的教父"。
图灵奖评委会指出,这三位科学家"为使深度神经网络成为计算的关键组成部分做出了概念性和工程性的突破"。他们的工作彻底改变了计算机视觉、语音识别、自然语言理解和机器人技术等领域。
杨立昆对卷积神经网络的开发和应用被评委会特别提及。正是他的工作使深度学习能够应用于实际任务——他是第一个训练系统读取手写数字图像的人。如今,卷积神经网络被广泛应用于自动驾驶、医学图像分析、语音激活助手和信息过滤等领域。
2. 其他重要荣誉
除了图灵奖外,杨立昆还获得了众多其他学术荣誉:
- 1990年:获得美国国家技术勋章
- 2014年:获得IEEE神经网络先驱奖
- 2015年:获得PAMI杰出研究员奖
- 2016年:获得Lovie终身成就奖和宾夕法尼亚大学Harold Pender奖
- 2018年:获得IRI奖章
- 2019年:获得美国成就学院金盘奖
- 2022年:与约书亚·本吉奥、杰弗里·欣顿和戴密斯·哈萨比斯一起获得阿斯图里亚斯公主奖的"科学研究"类别奖项
- 2023年:被法国总统授予法国荣誉军团骑士勋章
- 2024年:在达沃斯世界经济论坛上获得2023年全球瑞士AI奖
- 2024年:与约书亚·本吉奥、黄仁勋、杰弗里·欣顿和李飞飞一起获得VinFuture大奖
此外,杨立昆还是美国国家科学院、美国国家工程院和法国科学院的院士,以及ACM、AAAI、AAAS和SIF的会士。他还获得了多所大学的荣誉博士学位,包括墨西哥国立理工大学、洛桑联邦理工学院、法国蔚蓝海岸大学、意大利锡耶纳大学和香港科技大学。
这些荣誉不仅彰显了杨立昆在学术界的崇高地位,也证明了他的研究对整个科技产业和社会的深远影响。
五、核心技术贡献
1. 卷积神经网络(CNN)
杨立昆最重要的贡献是发明了卷积神经网络(Convolutional Neural Networks, CNN),这一创新彻底改变了计算机视觉领域。
传统神经网络在处理图像数据时面临巨大挑战:如果将每个像素作为独立输入,不仅参数数量呈爆炸性增长,而且无法利用图像的空间结构信息。更重要的是,传统网络无法实现位置不变性——如果学习识别左上角的某个特征,同样的特征出现在图像其他位置时却无法识别。
杨立昆的卷积神经网络巧妙地解决了这些问题。CNN的核心思想是使用滤波器或检测器在输入值网格上扫描。这样,网络的高层部分会被提醒任何位置出现的模式。这种方法:
- 减少了参数数量(通过权重共享)
- 加快了训练速度
- 提高了网络性能
- 实现了平移不变性(同一特征在图像不同位置也能被识别)
具体来说,CNN通过以下几个关键组件实现其功能:
- 卷积层:使用卷积核在输入图像上滑动,提取局部特征
- 池化层:降低特征图的空间尺寸,提取显著特征
- 全连接层:将提取的特征用于最终分类或回归任务
Conv2D(filters=32, kernel_size=(3,3), activation='relu')
是CNN中典型的卷积层,而 MaxPooling2D(pool_size=(2,2))
则是常见的池化操作。
2. 手写字符识别
杨立昆将卷积神经网络应用于手写字符识别,开发了LeNet系列网络,特别是LeNet-5,这是他另一项重要贡献。
在1990年代,手写识别是一个极具挑战性的问题,尽管整个行业都在推动使其在"平板电脑"计算机(今天平板电脑的祖先)上可靠工作。自动支票清算是一个重要应用,每天要处理数百万张支票。
杨立昆与约书亚·本吉奥、莱昂·博图和帕特里克·哈夫纳合作,在20世纪90年代初开发了一个系统,可以识别支票上手写的数字。这项工作具有几个突出特点:
- 要求极高的准确率
- 相比通用手写分析,只需识别数字,有效减少了有效符号数量
- 该技术被NCR等银行系统专业提供商授权使用
- 在20世纪90年代末至21世纪初,该系统处理了美国约10%的支票
这一应用是计算机视觉和机器学习从实验室走向现实世界的重要里程碑,证明了深度学习技术在实际商业应用中的价值。
3. 能量基模型与自监督学习
除了CNN,杨立昆还在能量基模型(Energy-Based Models, EBM)和自监督学习(Self-Supervised Learning, SSL)领域做出了重要贡献。
能量基模型是一种非概率性的图形模型(更准确地说,是因子图的非标准化形式)。它将标量能量与观察变量和需要预测的变量的配置相关联。给定观察变量的值,EBM中的推理过程在于找到能够最小化能量的预测变量值。学习过程则是"塑造"能量景观,使其在预测变量的期望值附近具有最小值。
杨立昆对自监督学习的热情和贡献同样显著。他强烈认为自监督学习是实现人类水平AI的必要条件。他经常在演讲中使用一张带有法国大革命场景的著名绘画,上面叠加着这样的文字:“革命将不会被监督”。这反映了他的信念:下一次AI革命将发生在AI系统不再需要监督学习时。
自监督学习的核心思想是模型可以通过观察世界,辨别模式,做出预测(有时还包括行动和干预),并根据其预测与观察到的结果的匹配程度更新其知识,而无需大量人类标注的训练样本。这种方法:
- 减少了对人工标注数据的需求
- 允许模型通过自我改进不断学习
- 更接近人类和动物的自然学习方式
杨立昆认为,自监督学习对于构建能够理解世界、推理和规划的AI系统至关重要,这些系统最终将具备人类的推理能力、常识和在不同环境中迁移技能的能力。
六、最新研究方向
1. 联合嵌入预测架构(JEPA)
近年来,杨立昆的研究重点转向了一种新型架构,即联合嵌入预测架构(Joint Embedding Predictive Architecture, JEPA)。这一架构是他通往自主机器智能愿景的关键组成部分。
图片:JEPA
2022年6月27日,杨立昆发表了备受期待的论文《通往自主机器智能的道路》(A Path Towards Autonomous Machine Intelligence),提出了JEPA的概念。这篇论文可以用一个简单的问题来概括:“机器如何像人类和动物一样高效地学习?”
JEPA是一种使用能量基模型的自监督学习架构,它捕捉两个给定输入之间的依赖关系。与传统的生成模型不同,JEPA学习输入的抽象表示,并以此为基础预测未来或被遮挡的部分,而不是直接预测原始数据(如像素值)。
JEPA的核心优势包括:
- 可以选择忽略那些不容易预测或不相关的细节
- 专注于语义相关的高级信息
- 可以堆叠使用,学习短期和长期预测的表示
杨立昆认为,通过自监督学习和JEPA这样的架构,我们可以构建出更接近人类和动物学习方式的AI系统,这些系统能够通过观察世界来学习,而不是依赖于大量的人工标注数据。
2. I-JEPA与V-JEPA
2023年,杨立昆和他的团队发表了第一个基于JEPA的实际模型——I-JEPA(Image-based Joint-Embedding Predictive Architecture),这是一种用于图像自监督学习的非生成方法。
图片:I-JEPA
I-JEPA的核心思想很简单:从单个上下文块,预测同一图像中各种目标块的表示。通过这种方式,模型学习到了图像的语义表示,而不依赖手工设计的数据增强。
紧接着,在2024年,团队推出了V-JEPA(Video-based Joint-Embedding Predictive Architecture),将JEPA的理念扩展到视频领域。V-JEPA处理短视频序列,学习预测视频中的运动和内容信息。
图片:V-JEPA
杨立昆对这些模型的未来持乐观态度。在接受Newsweek采访时,他表示:“我和我的同事们在[Facebook AI Research]和NYU所走的路线,如果我们能在三到五年内让它发挥作用,我们将有一个更好的范式,用于推理和规划的系统”。他希望这种方法将使当前基于LLM的AI方法过时,因为这些新系统将包含对世界的真实表示,并且是"可控的,因为你可以给它们目标,而且从构建上讲,它们唯一能做的就是完成这些目标"。
3. 对当前AI发展的观点
杨立昆对当前AI发展的看法常常与主流观点形成鲜明对比。作为Meta的首席AI科学家,他对大型语言模型(LLMs)的局限性毫不讳言。
在2024年4月的戛纳世界AI节上,杨立昆宣称"机器学习在其现有形式下很糟糕",并表示要实现更智能的AI系统,机器需要理解世界如何运作,以及记忆、推理和规划的能力。他断言,“AI的未来,我告诉你,是非生成式的。它适用于文本,但不适用于其他任何东西”。
杨立昆特别批评了自回归模型,认为虽然这些系统有用,但它们仅代表了人类知识的一小部分。作为通往人类水平智能的道路,“它们是一条岔路”。
关于人工通用智能(AGI)的普遍担忧,杨立昆也提出了自己的替代观点。他提出了"先进机器智能"(Advanced Machine Intelligence, AMI)的概念,并强调即使人类也不是通才,每个人都是特定领域的专家。他表示,如果有人告诉你AI会杀死我们所有人,“不要听他们的”。
这种对主流AI发展路线的批判性思考,反映了杨立昆作为领域先驱的独立思考能力和前瞻视野,也为AI研究提供了重要的多元化视角。
七、对深度学习未来的影响与展望
1. 自监督学习的前景
杨立昆坚信,自监督学习将成为AI未来发展的关键。在他看来,当前基于大规模标注数据的监督学习方法存在根本性的局限,而自监督学习提供了一条更接近人类和动物学习方式的道路。
自监督学习的核心优势在于:
- 无需大量人工标注的数据
- 能够从未标记的数据中学习潜在的结构和模式
- 可以持续自我改进
- 更好地泛化到新的、未见过的情况
杨立昆指出,人类婴儿通过观察世界获得的数据量远超当前最大的语言模型:“一个孩子看到的数据比在所有可用文本上训练的LLM多50倍”。这种观察强化了他对自监督学习作为通往人类水平智能路径的信念。
随着I-JEPA和V-JEPA等模型的发展,我们可以期待在未来几年看到更强大的自监督学习系统,这些系统能够以更少的计算资源和更高的效率学习,同时具备更好的泛化能力。
2. 与其他AI先驱的不同观点
在AI安全和风险评估方面,杨立昆的观点与其他一些AI先驱,包括他的前导师杰弗里·欣顿,存在明显分歧。
当欣顿在2023年从谷歌退休时,他警告说:“我们很快就会得到比我们更聪明的东西,而这些东西可能会有不良动机并接管控制权”,并补充说:“这不仅仅是一个科幻问题。这是一个可能很快就会到来的严重问题”。欣顿估计,到2030年,当前的AI系统导致人类灭绝的可能性为10%至20%。
杨立昆则强烈反对这种观点。他坚定地表示:“这完全是错误的,因为首先,我认为人们给予纯粹的智能太多信任和权力了”。他辛辣地补充道:“看看今天的政治舞台,智能实际上是否是如此重要的因素并不明确”。
这种分歧反映了AI研究社区内部对AI发展路径和潜在风险的不同理解,也突显了杨立昆作为独立思考者的角色。
3. 构建真正的智能系统
杨立昆对构建真正智能系统的愿景超越了当前的大型语言模型(LLMs)。他认为,要实现真正的智能,AI系统需要:
- 构建世界模型,而不仅仅是预测下一个词
- 具备多层次的抽象表示能力
- 能够进行规划和推理
- 拥有类似人类的常识
他提出的JEPA架构正是朝着这个方向迈出的重要一步。通过学习高级语义表示而不是直接预测原始数据,JEPA模型可以更好地理解世界的结构。
同时,杨立昆也强调了模块化架构的重要性。他认为,每个模块都可以以可微分的方式学习其任务,并通过高级抽象与其他模块通信。这在某种程度上类似于人类和动物的大脑,它们具有模块化架构(不同的皮质区域、下丘脑、基底神经节、杏仁核、脑干、海马体等),每个模块都与其他模块相连,并有各自的神经结构,随着生物体的经验而逐渐更新。
通过这种方式,杨立昆希望构建能够像人类一样学习、推理和适应的AI系统,而不是简单地扩大当前模型的规模。
八、结语
杨立昆的学术生涯跨越了深度学习的整个发展历程,从神经网络的冬天到如今的繁荣。他的贡献不仅仅是技术上的创新,更是对机器如何学习和智能如何形成的深刻思考。
作为深度学习三巨头之一,杨立昆与杰弗里·欣顿和约书亚·本吉奥一起,将神经网络从学术理论转变为改变世界的技术。卷积神经网络已经成为计算机视觉的基石,而他对自监督学习的坚持正在为AI的未来发展指明方向。
在人工智能快速发展的今天,杨立昆独特的视角和批判性思维尤为珍贵。他对LLMs局限性的洞察,对自监督学习的信念,以及对构建真正智能系统的愿景,为我们提供了思考AI未来的不同角度。
如今,杨立昆仍然活跃在研究前沿,推动着JEPA等新型架构的发展。他的故事提醒我们,真正的科学突破往往来自于那些敢于质疑主流、坚持自己愿景的先驱者。正如他所说:“我们必须超越当前的大语言模型,建立能真正理解世界的自主智能系统”。
这位从巴黎郊区出发的少年,通过他的智慧和坚持,成为了改变世界的力量。杨立昆的传奇仍在继续,而他对深度学习的贡献将永远铭刻在计算机科学的历史中。
九、参考资料
- Wikipedia - Yann LeCun
- ACM A.M. Turing Award - Yann LeCun
- NYU - Courant’s LeCun Wins Turing Award for Breakthroughs in Artificial Intelligence
- Newsweek - Yann LeCun Thinks Today’s LLMs Are Nearly Obsolete
- IEEE Spectrum - Yann LeCun: AI Doesn’t Need Our Supervision
- AI Business - Meta’s Yann LeCun Wants to Ditch Generative AI
- VentureBeat - Meta’s Yann LeCun strives for human-level AI
- Shaped AI - A Path Towards Autonomous Machine Intelligence
- arXiv - Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture
本文是CSDN “计算机名人堂” 专栏的一部分,旨在向读者介绍对计算机科学和技术发展做出重要贡献的人物。如果您对本文有任何建议或反馈,欢迎在评论区留言。
专栏✅:《计算机名人堂》,欢迎订阅催更,谢谢大家支持!
创作者:Code_流苏(CSDN)