[论文学习]2——Variable-Wise Weighted SAE (VW-SAE) 可变量加权堆栈自编码器

 

《Deep Learning-Based Feature Representation and Its Application for Soft Sensor Modeling With Variable-Wise Weighted SAE》
论文地址:https://ieeexplore.ieee.org/document/8302941

本文将论文的第二部分 II.DEEP LEARNING AND SAE 进行了学习,更准备的说应该是翻译了一遍。该文主要是为了方便自己毕设的学习和理解。

在翻译过程中学习VM-SAE由来的思想。
 

目录

A.可变加权AE(VW-AE)

B.可变加权SAE(VW-SAE)

C.基于VW-SAE的软测量

 

分层预训练可以帮助深度学习从低级别的数据中提取高级特征。因此,它可以通过层次结构在更高层次上学习更复杂和抽象的特征。然而,对于软测量应用,由于无监督的预训练机制,这些特征可能包含许多与目标输出无关的信息。为了解决这个问题,我们引入了监督和半监督预训练策略被用在更好的通过VW-SAE模型逐层提取相关特征。新的深层网络由多层可变加权AE(VM-AE)组成。因此,我们首先描述VW-AE模型。

A.可变加权AE(VW-AE)

分层预训练用于为SAE提供良好的初始权重。这是通过最小化整个输入空间上的训练样本的重建误差实现的。然而,进一步考虑图1 中的AE。在原始的AE中,它的目的是在输出层重建输入数据。换句话说,重建的x~ 应尽可能的与原始的x相似。因此,在整个dx维度内应该最小化重建误差||x-x~||^2。如果我们在每个维度上展开这个术语

很容易看出,每一个变量的重建都应该保持准确为了保持整个重建误差小。对于软测量应用,并非所有变量都与目标输出相关。此外,不同的变量对目标变量的影响也不同。虽然变量向量的某些维度元素与输出变量的关系可能很小,但它们在AE的重建中仍然与其他维度变量起着相同的作用。因此,该变量的维度也应该被准确地重建。然后,提取的隐藏特征具有与输出预测无关的信息。由于预训练是逐层进行的,因此该变量的信息被前向传播到高级特征层。因此,在这些高级特征中存在无关信息。这主要是由输入的无监督重建引起的。

一个合理的AE应该更加重要在提取与输出预测高度相关的特征。因此,对于那些与输出相关的变量的重建应该更加准确,反之亦然。为此,有必要在重建对象中对变量的不同维度赋予不同的权重。因此,基于AE模型变量权重被计算。为了训练VW-AE,应首先使用标记数据来获得可变权重。假设标记的训练数据为\begin{Bmatrix}X_{l},Y_{l} \end{Bmatrix}=\begin{Bmatrix}(x_{1},y_{1}),(x_{2},y_{2}),...,(x_{j},y_{j}),...,(x_{N_{l}},y_{N_{l}}) \end{Bmatrix},其中N_{l}是标记样本的数量。变量的重要性由它们与目标变量的相关性决定。因此,通过标记数据计算第d个变量的相关系数

其中X_{l(d))}标记数据的第d个变量的集合集,也就是说

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值