一、SAE
1、自编码算法(SAE)功能
(1)自编码算法是一种无监督算法,可以自动从无标注数据中学习特征,可以给出比原始数据更好的特征描述。
(2)因为具有稀疏性,完成了特征的自动选择而不是采用随机的方式,这种方式明显要靠谱一些。就跟主成分分析方法(PCA)类似,自动完成了降维的过程。
2、算法结构及原理
(1)Stacked Autoencoder(SAE)模型是一个由多层Spase AutoEncoder(稀疏自编码器)组成的深度神经网络模型,其前一层自编码器的输出作为其后一层自编码器的输入,最后一层是个分类器(logistic分类器或者softmax分类器,其中logistic回归模型适用于二分类,softmax回归模型适用于多分类)
(2)Spase AutoEncoder(稀疏自编码器)是一种非监督学习算法,需要满足以下两种约束:
a、autoencoder:自编码器要求输出尽可能等于输入
b、sparse:隐层的每个神经元的响应是稀疏的,也就是大部分时间响应为0,也就是平均响应尽可能小(
自编码算法(SAE)
最新推荐文章于 2025-02-28 16:34:38 发布