第十三章 欧拉图与哈密顿图(图论)

第十三章 欧拉图与哈密顿图

13.1 欧拉图 Euler

引入:哥尼斯堡的普雷格尔(Pregel)河上的七桥问题

  • 欧拉图

    • 定义:具有欧拉回路的图。欧拉道路指的是,包含图中每条边的简单道路。欧拉回路指的是,包含图中每条边的闭的简单道路(回路)。规定平凡图为欧拉图。

      无重复边,无孤立结点,是连通图

      存在欧拉道路不一定是欧拉图

    • 定理13.1无向连通图 G = < V , E > G=<V,E> G=<V,E>欧拉图    ⟺    G \iff G G 的所有结点度数都为偶数。

    • 推论13.1.1非平凡连通图 G = < V , E > G=<V,E> G=<V,E> 含有欧拉道路    ⟺    G \iff G G 仅有零个或两个奇度数结点。若有两个奇度数结点,则它们是图中每条欧拉通路的端点。

    • 定理13.2有向连通图 G G G 含有欧拉道路    ⟺    G \iff G G 的所有结点中,一个结点入度比出度大1,另一个结点出度比入度大1,其余结点入度等于出度。

      有向连通图 G G G 含有欧拉回路(是欧拉图)    ⟺    G \iff G G 的所有结点入度等于出度。

  • Fleury算法:构造欧拉回路 O ( n 2 ) O(n^2) O(n2)

    • 步骤:设 G = < V , E > G=<V,E> G=<V,E> 是一个欧拉图
      • ⨀ \color{red}\bigodot 1.任选一点 v k v_k vk
      • ⨀ \color{red}\bigodot 2.从与当前点相连的边集 E k E_k Ek 中尽可能选择未走过的**不为桥(割边)**的边,走到下一点
      • ⨀ \color{red}\bigodot 3.当所有边都走过后,算法结束。
  • 中国邮递员问题:一个邮递员从邮局出发,在其分管的投递区域内走遍所有的街道把邮件送到每个收件人手中,最后又回到邮局,要走怎样的线路使全程最短。

    管梅谷1962年提出

    • 算法:由于奇度数结点只能为偶数(握手定理)

      • ⨀ \color{red}\bigodot 1.若图中奇度数结点为零,则任一欧拉回路为解

      • ⨀ \color{red}\bigodot 2.若图中奇度数结点为 2 k ( k > 0 ) 2k(k>0) 2k(k>0),则求出任意两点的最短路径,再找出 k k k 条道路。其中 2 k 2k 2k 个结点在这 k k k 条路的两端点中均只出现一次且使 k k k 条路总长度最短。

        ⨀ \color{red}\bigodot 3.在原图中复制这 k k k 条边,得到图 G ′ G' G。则 G ′ G' G 的欧拉回路即为解。

  • 应用

    • 模数转换问题:分成 16 16 16 个部分的鼓轮,其中每个部分输出信号 0 0 0 1 1 1,每次选取连续四个部分形成信息 x x x x xxxx xxxx。满足从 0000 0000 0000 1111 1111 1111 16 16 16 个数字都能出现。

      解: 0000    1001    1010    1111 0000\;1001\;1010\;1111 0000100110101111

6.2 哈密顿图 Hamiltonian

引入:周游世界问题 1857年 W.R.Hamilton

  • 定义:含有哈密顿圈的图。哈密顿道路指的是,包含图中每个结点的长度最短的基本道路。哈密顿圈指的是,包含图中每个结点的长度最短的圈。规定平凡图为哈密顿图。

  • 定理13.3(哈密顿图必要条件)无向连通图 G = < V , E > G=<V,E> G=<V,E>哈密顿图,则 ω ( G − S ) ≤ ∣ S ∣ \color{red}\omega(G-S)\le |S| ω(GS)S。其中 S ⊂ V S\subset V SV S ≠ ∅ S\ne \empty S= ω ( G − S ) \omega(G-S) ω(GS) 指的是 G G G 中删除 S S S 后所得图的连通分支数。

    证明
    设 C 是 G 的 一 个 哈 密 顿 圈 , 则 ∀ S ( ≠ ∅ ) ⊆ V , 有 ω ( C − S ) ≤ ∣ S ∣ ∵ C − S 是 G − S 的 一 个 生 成 子 图 ∴ ω ( G − S ) ≤ ω ( C − S ) ≤ ∣ S ∣ 设C是G的一个哈密顿圈,则 \forall S(\ne\empty)\subseteq V,有\omega(C-S)\le |S|\\ \because C-S是G-S的一个生成子图\therefore \omega(G-S)\le\omega(C-S)\le|S| CG,S(=)V,ω(CS)SCSGSω(GS)ω(CS)S
    注意

    1. 此定理是必要条件。例:彼得森图满足 ω ( G − S ) ≤ ∣ S ∣ \omega(G-S)\le |S| ω(GS)S,但不是哈密顿图
    2. 逆否命题:若 ω ( G − S ) > ∣ S ∣ \omega(G-S)>|S| ω(GS)>S,则 G G G 不是哈密顿图。

    例题:P73

  • 定理13.4:若简单图中任意两结点 u , v ∈ V u,v\in V u,vV 均有 deg ⁡ ( u ) + deg ⁡ ( v ) ≥ ∣ V ∣ − 1 \color{red}\deg(u)+\deg(v)\ge |V|-1 deg(u)+deg(v)V1,则 G G G 中存在哈密顿道路。

    证明:(构造性证明) n = ∣ V ∣ n=|V| n=V
    首 先 满 足 deg ⁡ ( u ) + deg ⁡ ( v ) ≥ ∣ V ∣ − 1 的 G 一 定 是 连 通 图 , 反 证 : 非 连 通 图 至 少 有 两 支 , 设 为 G 1 = < V 1 , E 1 > 和 G 2 = < V 2 , E 2 > . 则 对 ∀ v 1 ∈ V 1 , v 2 ∈ V 2 , 有 deg ⁡ ( v 1 ) + deg ⁡ ( v 2 ) ≤ ∣ V 1 ∣ − 1 + ∣ V 2 ∣ − 1 = n − 2 < n − 1 与 已 知 矛 盾 . 其 次 证 明 G 存 在 哈 密 顿 道 路 , 设 L = v 1 v 2 . . . v k 为 G 中 最 长 的 一 条 基 本 道 路 , 则 k ≤ n ( 1 ) 若 k = n , 则 L 即 为 哈 密 顿 道 路 ( 2 ) 若 k < n , 下 证 此 情 况 不 可 能 。 由 L 的 最 长 性 , 发 现 v 1 , v k 的 所 有 邻 接 点 都 在 L 上 ( 易 反 证 ) a ) 若 v 1 v k ∈ E , 则 v 1 v 2 . . . v k v 1 构 成 G 的 一 个 包 含 L 的 圈 a ) 若 v 1 v k ∉ E , 则 存 在 v i ∈ L , 使 得 v 1 v i ∈ E ⟹ v i − 1 v k ∈ E . ( v i − 1 表 示 v i 在 L 上 的 邻 接 点 ) 反 证 : 对 ∀ v i ∈ L , 有 v 1 v i ∈ E 而 v i − 1 v k ∉ E . 设 v 1 在 L 上 与 v 2 , v i 2 , v i 3 , . . . , v i t 相 邻    ∵ n − 1 ≤ deg ⁡ ( v 1 ) + deg ⁡ ( v k ) ≤ deg ⁡ ( v 1 ) + k − 2 < deg ⁡ ( v 1 ) + n − 2 ∴ t ≥ 2 此 时 v k 至 少 与 v i 2 − 1 , v i 3 − 1 , . . . , v i t − 1 之 一 相 邻 否 则 ∵ deg ⁡ ( v 1 ) + deg ⁡ ( v k ) ≤ t + ( k − 2 − ( t − 1 ) ) = k − 1 < n − 1 矛 盾 于 是 可 构 造 一 个 圈 C = v 1 v 2 . . . v i − 1 v k v k − 1 . . . v i v 1 包 含 了 L 中 的 所 有 结 点 。 \begin{aligned} &首先满足{\color{red}\deg(u)+\deg(v)\ge |V|-1}的G一定是连通图,\\ &\qquad 反证: 非连通图至少有两支,设为G_1=<V_1,E_1>和G_2=<V_2,E_2>.\\ &\qquad\qquad 则对\forall v_1\in V_1,v_2\in V_2,有\deg(v_1)+\deg(v_2){\color{red}\le |V_1|-1+|V_2|-1=n-2<n-1} 与已知矛盾. \\ &其次证明G存在哈密顿道路,设 L=v_1v_2...v_k为G中最长的一条基本道路,则{\color{red}k\le n}\\ &\qquad(1)若k=n,则L即为哈密顿道路 \\ &\qquad(2)若k<n,下证此情况不可能。\\ &\qquad由L的最长性,发现{\color{red}v_1,v_k的所有邻接点都在L上(易反证)}\\ &\qquad\qquad a)若v_1v_k\in E,则v_1v_2...v_kv_1构成G的一个包含L的圈\\ &\qquad\qquad a)若v_1v_k\notin E,则存在v_i\in L,使得\color{red}v_1v_i\in E\Longrightarrow v_{i-1}v_k\in E.(v_{i-1}表示v_i在L上的邻接点)\\ &\qquad\qquad\qquad 反证:对\forall v_i\in L,有v_1v_i\in E而v_{i-1}v_k\notin E.\\ &\qquad\qquad\qquad 设v_1在L上与v_2,v_{i_2},v_{i_3},...,v_{i_t}相邻\;\color{red}\because n-1\le\deg(v_1)+\deg(v_k)\le \deg(v_1)+k-2<\deg(v_1)+n-2\therefore t\ge 2 \\ &\qquad\qquad\qquad 此时v_k 至少与v_{i_2-1},v_{i_3-1},...,v_{i_t-1}之一相邻\\ &\qquad\qquad\qquad 否则\color{red}\because \deg(v_1)+\deg(v_k)\le t+(k-2-(t-1))=k-1<n-1矛盾 \\ &\qquad\qquad\qquad 于是可构造一个圈C=v_1v_2...v_{i-1}v_kv_{k-1}...v_iv_1包含了L中的所有结点。\\ &\qquad\qquad\qquad \end{aligned} deg(u)+deg(v)V1G,:,G1=<V1,E1>G2=<V2,E2>.v1V1,v2V2,deg(v1)+deg(v2)V11+V21=n2<n1.G,L=v1v2...vkG,kn(1)k=n,L(2)k<nL,v1,vkL()a)v1vkE,v1v2...vkv1GLa)v1vk/E,viL,使v1viEvi1vkE.(vi1viL)viL,v1viEvi1vk/E.v1Lv2,vi2,vi3,...,vitn1deg(v1)+deg(vk)deg(v1)+k2<deg(v1)+n2t2vkvi21,vi31,...,vit1deg(v1)+deg(vk)t+(k2(t1))=k1<n1C=v1v2...vi1vkvk1...viv1L

  • 定理13.5(哈密顿图充分条件):若简单图( ∣ V ∣ ≥ 3 |V|\ge 3 V3)中任意两结点 u , v ∈ V u,v\in V u,vV 均有 deg ⁡ ( u ) + deg ⁡ ( v ) ≥ ∣ V ∣ \color{red}\deg(u)+\deg(v)\ge |V| deg(u)+deg(v)V,则 G G G 必是哈密顿图。

  • 图的闭包:若简单图中存在不相邻结点 u , v ∈ V u,v\in V u,vV,满足 deg ⁡ ( u ) + deg ⁡ ( v ) ≥ ∣ V ∣ \color{red}\deg(u)+\deg(v)\ge |V| deg(u)+deg(v)V,则构造图 G + u v G+uv G+uv。。。。。

    • 一个简单图是哈密顿图    ⟺    \iff 其闭包是哈密顿图
    • 定理13.7(可否定平面图为哈密顿图):对于 n n n 阶无环连通平面图 G = < V , E > G=<V,E> G=<V,E>,若 G G G 含有哈密顿圈 C C C,则 ∑ i = 1 n ( i − 2 ) ( f i ( 1 ) − f i ( 2 ) ) = 0 \sum\limits_{i=1}^n(i-2)(f_i^{(1)}-f_i^{(2)})=0 i=1n(i2)(fi(1)fi(2))=0。其中 f i ( 1 ) f_i^{(1)} fi(1) f i ( 2 ) f_i^{(2)} fi(2) 分别是在圈 C C C 内部和外部的 i i i 点度面的数量。
  • 旅行商问题:商人从一个城市出发,去到每个城市一次,最后回到出发地,每两个城市之间需要一定旅费。怎样安排行程旅费最少。(在带权完全图中找最优哈密顿圈)

    • 求近似解:回路修正法,近邻法
    • 求精确解:分支定界法
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值