XGboost

X G b o o s t XGboost XGboost


Boosting思想:
Boosting方法训练基分类器时采用串行的方式,各个基分类器之间有依赖。它的基本思路是将基分类器层层叠加,每一层在训练的时候,对前一层基分类器分错的样本,给予更高的权重。测试时,根据各层分类器的结果的加权得到最终结果。

Bagging与Boosting的串行训练方式不同,Bagging方法在训练过程中,各基分类器之间无强依赖,可以进行并行训练。


一 XGboost简介

二 监督学习

三 分类回归树与随机森林

四 XGBoost

五 XGBoost实战

六 GBDT与XGBoost

七 XGboost手写公式


补充:

防止过拟合:

  • XGBoost提出了两种防止过拟合的方法:
  • 第一种称为Shrinkage,在每次迭代一棵树的时候对每个叶子结点的权重乘上一个缩减系数,使每棵树的影响不会过大,并且给后面的树留下更大的空间优化。
  • 另一个方法称为Column Subsampling,类似于随机森林选区部分特征值进行建树,其中又分为两个方式:方式一按层随机采样,在对同一层结点分裂前,随机选取部分特征值进行遍历,计算信息增益;方式二在建一棵树前随机采样部分特征值,然后这棵树的所有结点分裂都遍历这些特征值,计算信息增益。
已标记关键词 清除标记
相关推荐
<p class="ql-text-indent-1 ql-long-5913158" style="text-indent:29.3333px;font-size:11pt;color:#494949;"> <span class="ql-author-5913158">SVM的教程在网上已经有很多了,比如经典的《支持向量机通俗导论:理解SVM的三层境界》,但本课程作为《机器学习集训营》的试听课程,会手把手带你推导SVM和XGBoost。</span> </p> <p class="ql-text-indent-1 ql-long-5913158" style="text-indent:29.3333px;font-size:11pt;color:#494949;"> <span class="ql-author-5913158">XGBoost一直是kaggle竞赛中的神器,是boosting算法的其中一种,而Boosting算法的思想是将许多弱分类器集成在一起形成一个强分类器。XGBoost作为一种提升树模型,将许多树模型集成在一起,形成一个强分类器,所用到的树模型则是CART回归树模型。</span> </p> <p class="ql-text-indent-1 ql-long-5913158" style="text-indent:29.3333px;font-size:11pt;color:#494949;"> <span class="ql-author-5913158">通过本集训营试听课程快速掌握SVM和Xgboost 两大算法的理论推导后,可以进一步学习《机器学习集训营》。</span> </p> <p>   </p> <p class="ql-text-indent-1 ql-long-5913158" style="text-indent:29.3333px;font-size:11pt;color:#494949;"> <span class="ql-author-5913158">《机器学习集训营》总计八大阶段,十三个实战项目(三大企业项目、十个实训项目),涵盖Python基础与数据分析、机器学习原理、机器学习实战、深度学习原理、深度学习实战,以及CV 推荐 NLP三大方向的BAT工业级大项目实战、面试就业指导等等,助力你的就业、转型、提升之路,3个月挑战年薪40万。</span> </p>
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页