速算技巧之乘法

速算技巧之乘法

(1) 交叉相乘法(速算两位数乘法)

头x头,尾x尾,积放两端,交叉相乘的积之和放中间
结果满十进位

交叉相乘法是一种非常高效的速算方法,特别适用于两位数的乘法。根据你给出的规则,步骤如下:

  1. 头x头:将两个数的十位相乘,积放在结果的最前面。
  2. 尾x尾:将两个数的个位相乘,积放在结果的最后面。
  3. 交叉相乘:将两个数的十位和个位进行交叉相乘,把结果放在中间,并计算它们的和。
  4. 从右往左进行进位处理:当结果的某个部分满十时,进行进位。

以下是几个交叉相乘法的速算案例,适用于教学:


案例 1: 23 × 45 23 \times 45 23×45

  1. 头x头 2 × 4 = 8 2 \times 4 = 8 2×4=8(放在最前面)

  2. 尾x尾 3 × 5 = 15 3 \times 5 = 15 3×5=15(放在最尾端)

  3. 交叉相乘

    • 2 × 5 = 10 2 \times 5 = 10 2×5=10 3 × 4 = 12 3 \times 4 = 12 3×4=12
    • 交叉相乘结果: 10 + 12 = 22 10 + 12 = 22 10+12=22(放在中间)
  4. 进位处理

    • 结果是: 8   22   15 8\ 22\ 15 8 22 15
    • 经过进位, 8 + 2 = 10 8 + 2 = 10 8+2=10,进1
    • 所以结果为: 1   0   2   3   5 1\ 0\ 2\ 3\ 5 1 0 2 3 5

答案: 23 × 45 = 1035 23 \times 45 = 1035 23×45=1035


案例 2: 56 × 78 56 \times 78 56×78

  1. 头x头 5 × 7 = 35 5 \times 7 = 35 5×7=35(放在最前面)

  2. 尾x尾 6 × 8 = 48 6 \times 8 = 48 6×8=48(放在最尾端)

  3. 交叉相乘

    • 5 × 8 = 40 5 \times 8 = 40 5×8=40 6 × 7 = 42 6 \times 7 = 42 6×7=42
    • 交叉相乘结果: 40 + 42 = 82 40 + 42 = 82 40+42=82(放在中间)
  4. 进位处理

    • 结果是: 35   82   48 35\ 82\ 48 35 82 48
    • 经过进位, 35 + 8 = 43 35 + 8 = 43 35+8=43,进4
    • 所以结果为: 4   3   3   2   8 4\ 3\ 3\ 2\ 8 4 3 3 2 8

答案: 56 × 78 = 4368 56 \times 78 = 4368 56×78=4368


案例 3: 64 × 57 64 \times 57 64×57

  1. 头x头 6 × 5 = 30 6 \times 5 = 30 6×5=30(放在最前面)

  2. 尾x尾 4 × 7 = 28 4 \times 7 = 28 4×7=28(放在最尾端)

  3. 交叉相乘

    • 6 × 7 = 42 6 \times 7 = 42 6×7=42 4 × 5 = 20 4 \times 5 = 20 4×5=20
    • 交叉相乘结果: 42 + 20 = 62 42 + 20 = 62 42+20=62(放在中间)
  4. 进位处理

    • 结果是: 30   62   28 30\ 62\ 28 30 62 28
    • 经过进位, 30 + 6 = 36 30 + 6 = 36 30+6=36,进3
    • 所以结果为: 3   7   3   1   8 3\ 7\ 3\ 1\ 8 3 7 3 1 8

答案: 64 × 57 = 3648 64 \times 57 = 3648 64×57=3648


案例 4: 72 × 86 72 \times 86 72×86

  1. 头x头 7 × 8 = 56 7 \times 8 = 56 7×8=56(放在最前面)

  2. 尾x尾 2 × 6 = 12 2 \times 6 = 12 2×6=12(放在最尾端)

  3. 交叉相乘

    • 7 × 6 = 42 7 \times 6 = 42 7×6=42 2 × 8 = 16 2 \times 8 = 16 2×8=16
    • 交叉相乘结果: 42 + 16 = 58 42 + 16 = 58 42+16=58(放在中间)
  4. 进位处理

    • 结果是: 56   58   12 56\ 58\ 12 56 58 12
    • 经过进位, 56 + 5 = 61 56 + 5 = 61 56+5=61,进6
    • 所以结果为: 6   1   9   1   2 6\ 1\ 9\ 1\ 2 6 1 9 1 2

答案: 72 × 86 = 6192 72 \times 86 = 6192 72×86=6192


案例 5: 81 × 94 81 \times 94 81×94

  1. 头x头 8 × 9 = 72 8 \times 9 = 72 8×9=72(放在最前面)

  2. 尾x尾 1 × 4 = 4 1 \times 4 = 4 1×4=4(放在最尾端)

  3. 交叉相乘

    • 8 × 4 = 32 8 \times 4 = 32 8×4=32 1 × 9 = 9 1 \times 9 = 9 1×9=9
    • 交叉相乘结果: 32 + 9 = 41 32 + 9 = 41 32+9=41(放在中间)
  4. 进位处理

    • 结果是: 72   41   4 72\ 41\ 4 72 41 4
    • 经过进位, 72 + 4 = 76 72 + 4 = 76 72+4=76,进7
    • 所以结果为: 7   6   2   4   4 7\ 6\ 2\ 4\ 4 7 6 2 4 4

答案: 81 × 94 = 7624 81 \times 94 = 7624 81×94=7624


总结

  1. 头x头:先将十位数相乘。
  2. 尾x尾:再将个位数相乘。
  3. 交叉相乘:将十位和个位交叉相乘,结果加起来。
  4. 进位处理:如有进位,按照十位处理进位,得到最终答案。

交叉相乘法是一个快速高效的计算方法,适用于各种两位数乘法,能够大大提高运算速度。


(2)十几乘十几的速算技巧

(一个因数+另一个因数的尾数)写前面
(尾数x尾数)写后面(满十进位)

这里是几个 十几乘十几 的速算案例,按照 尾数相乘写后面(满十进位),一个因数+另一个因数的尾数写前面 的技巧整理出来,方便教学使用:

案例 1:14 × 12

  1. 尾数相乘:4 × 2 = 8
  2. 头部计算:14 + 2 = 16
    答案:168

案例 2:17 × 13

  1. 尾数相乘:7 × 3 = 21(个位数1,进2)
  2. 头部计算:17 + 3 = 20,+ 进位2 = 22
    答案:221

案例 3:16 × 14

  1. 尾数相乘:6 × 4 = 24(个位数4,进2)
  2. 头部计算:16 + 4 = 20,+ 进位2 = 22
    答案:224

案例 4:18 × 15

  1. 尾数相乘:8 × 5 = 40(个位数0,进4)
  2. 头部计算:18 + 5 = 23,+ 进位4 = 27
    答案:270

案例 5:19 × 17

  1. 尾数相乘:9 × 7 = 63(个位数3,进6)
  2. 头部计算:19 + 7 = 26,+ 进位6 = 32
    答案:323

(3) 转化法

先将接近整十、整百、整千的数转为整数加减的形式
再运用乘法运算定律进行速算


案例 1: 98 × 47 98 \times 47 98×47

  1. 转化为整数加减形式

    • 98 接近 100,转换为: 98 = 100 − 2 98 = 100 - 2 98=1002
    • 47 保持不变
    • 所以: 98 × 47 = ( 100 − 2 ) × 47 98 \times 47 = (100 - 2) \times 47 98×47=(1002)×47
  2. 运用乘法运算定律

    • ( 100 − 2 ) × 47 = 100 × 47 − 2 × 47 (100 - 2) \times 47 = 100 \times 47 - 2 \times 47 (1002)×47=100×472×47
    • 计算: 100 × 47 = 4700 100 \times 47 = 4700 100×47=4700 2 × 47 = 94 2 \times 47 = 94 2×47=94
  3. 最终计算

    • 4700 − 94 = 4606 4700 - 94 = 4606 470094=4606
    • 答案: 98 × 47 = 4606 98 \times 47 = 4606 98×47=4606

案例 2: 105 × 92 105 \times 92 105×92

  1. 转化为整数加减形式

    • 105 接近 100,转换为: 105 = 100 + 5 105 = 100 + 5 105=100+5
    • 92 接近 100,转换为: 92 = 100 − 8 92 = 100 - 8 92=1008
    • 所以: 105 × 92 = ( 100 + 5 ) × ( 100 − 8 ) 105 \times 92 = (100 + 5) \times (100 - 8) 105×92=(100+5)×(1008)
  2. 运用乘法运算定律

    • ( 100 + 5 ) × ( 100 − 8 ) = 100 × 100 − 100 × 8 + 5 × 100 − 5 × 8 (100 + 5) \times (100 - 8) = 100 \times 100 - 100 \times 8 + 5 \times 100 - 5 \times 8 (100+5)×(1008)=100×100100×8+5×1005×8
    • 计算: 100 × 100 = 10000 100 \times 100 = 10000 100×100=10000 100 × 8 = 800 100 \times 8 = 800 100×8=800 5 × 100 = 500 5 \times 100 = 500 5×100=500 5 × 8 = 40 5 \times 8 = 40 5×8=40
  3. 最终计算

    • 10000 − 800 + 500 − 40 = 9650 10000 - 800 + 500 - 40 = 9650 10000800+50040=9650
    • 答案: 105 × 92 = 9650 105 \times 92 = 9650 105×92=9650

案例 3: 248 × 98 248 \times 98 248×98

  1. 转化为整数加减形式

    • 248 接近 250,转换为: 248 = 250 − 2 248 = 250 - 2 248=2502
    • 98 接近 100,转换为: 98 = 100 − 2 98 = 100 - 2 98=1002
    • 所以: 248 × 98 = ( 250 − 2 ) × ( 100 − 2 ) 248 \times 98 = (250 - 2) \times (100 - 2) 248×98=(2502)×(1002)
  2. 运用乘法运算定律

    • ( 250 − 2 ) × ( 100 − 2 ) = 250 × 100 − 250 × 2 − 2 × 100 + 2 × 2 (250 - 2) \times (100 - 2) = 250 \times 100 - 250 \times 2 - 2 \times 100 + 2 \times 2 (2502)×(1002)=250×100250×22×100+2×2
    • 计算: 250 × 100 = 25000 250 \times 100 = 25000 250×100=25000 250 × 2 = 500 250 \times 2 = 500 250×2=500 2 × 100 = 200 2 \times 100 = 200 2×100=200 2 × 2 = 4 2 \times 2 = 4 2×2=4
  3. 最终计算

    • 25000 − 500 − 200 + 4 = 24400 25000 - 500 - 200 + 4 = 24400 25000500200+4=24400
    • 答案: 248 × 98 = 24400 248 \times 98 = 24400 248×98=24400

案例 4: 999 × 101 999 \times 101 999×101

  1. 转化为整数加减形式

    • 999 接近 1000,转换为: 999 = 1000 − 1 999 = 1000 - 1 999=10001
    • 101 接近 100,转换为: 101 = 100 + 1 101 = 100 + 1 101=100+1
    • 所以: 999 × 101 = ( 1000 − 1 ) × ( 100 + 1 ) 999 \times 101 = (1000 - 1) \times (100 + 1) 999×101=(10001)×(100+1)
  2. 运用乘法运算定律

    • ( 1000 − 1 ) × ( 100 + 1 ) = 1000 × 100 + 1000 × 1 − 1 × 100 − 1 × 1 (1000 - 1) \times (100 + 1) = 1000 \times 100 + 1000 \times 1 - 1 \times 100 - 1 \times 1 (10001)×(100+1)=1000×100+1000×11×1001×1
    • 计算: 1000 × 100 = 100000 1000 \times 100 = 100000 1000×100=100000 1000 × 1 = 1000 1000 \times 1 = 1000 1000×1=1000 1 × 100 = 100 1 \times 100 = 100 1×100=100 1 × 1 = 1 1 \times 1 = 1 1×1=1
  3. 最终计算

    • 100000 + 1000 − 100 − 1 = 100899 100000 + 1000 - 100 - 1 = 100899 100000+10001001=100899
    • 答案: 999 × 101 = 100899 999 \times 101 = 100899 999×101=100899

案例 5: 54 × 95 54 \times 95 54×95

  1. 转化为整数加减形式

    • 54 接近 50,转换为: 54 = 50 + 4 54 = 50 + 4 54=50+4
    • 95 接近 100,转换为: 95 = 100 − 5 95 = 100 - 5 95=1005
    • 所以: 54 × 95 = ( 50 + 4 ) × ( 100 − 5 ) 54 \times 95 = (50 + 4) \times (100 - 5) 54×95=(50+4)×(1005)
  2. 运用乘法运算定律

    • ( 50 + 4 ) × ( 100 − 5 ) = 50 × 100 − 50 × 5 + 4 × 100 − 4 × 5 (50 + 4) \times (100 - 5) = 50 \times 100 - 50 \times 5 + 4 \times 100 - 4 \times 5 (50+4)×(1005)=50×10050×5+4×1004×5
    • 计算: 50 × 100 = 5000 50 \times 100 = 5000 50×100=5000 50 × 5 = 250 50 \times 5 = 250 50×5=250 4 × 100 = 400 4 \times 100 = 400 4×100=400 4 × 5 = 20 4 \times 5 = 20 4×5=20
  3. 最终计算

    • 5000 − 250 + 400 − 20 = 5130 5000 - 250 + 400 - 20 = 5130 5000250+40020=5130
    • 答案: 54 × 95 = 5130 54 \times 95 = 5130 54×95=5130

总结

  1. 转化:将接近整十、整百、整千的数转化为整数加减形式。
  2. 乘法定律:运用乘法的分配律进行拆分计算。
  3. 合并结果:最后将结果合并,得出最终答案。

偶数乘5的倍数

九十几乘九十几

两位数乘101,1001,10001

一百零几乘一百零几

乘5

乘25

乘125

乘9

乘99,999

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值