群的同态与同构

群的同态与同构

一、群同态(Group Homomorphism)
  1. 群同态的定义:

    • 群同态是群之间的一种映射,保持群运算的结构。设 G G G H H H 是两个群,如果存在映射 ϕ : G → H \phi: G \to H ϕ:GH,使得对于所有 a , b ∈ G a, b \in G a,bG,有:
      ϕ ( a ∗ b ) = ϕ ( a ) ∗ ϕ ( b ) \phi(a * b) = \phi(a) * \phi(b) ϕ(ab)=ϕ(a)ϕ(b)
      那么 ϕ \phi ϕ 就是一个群同态映射。
  2. 群同态的性质:

    • 如果 ϕ : G → H \phi: G \to H ϕ:GH 是群同态,那么:
      • ϕ ( e G ) = e H \phi(e_G) = e_H ϕ(eG)=eH,即单位元素映射到单位元素。
      • 核(Kernel):群同态的是映射 ϕ \phi ϕ G G G 中哪些元素映射到 H H H 的单位元素。形式化地,核是:
        ker ⁡ ( ϕ ) = { g ∈ G ∣ ϕ ( g ) = e H } \ker(\phi) = \{g \in G \mid \phi(g) = e_H\} ker(ϕ)={gGϕ(g)=eH}
      • 像(Image):群同态的 ϕ ( G ) \phi(G) ϕ(G) H H H 中的子集,即:
        Im ( ϕ ) = { ϕ ( g ) ∣ g ∈ G } \text{Im}(\phi) = \{ \phi(g) \mid g \in G \} Im(ϕ)={ϕ(g)gG}
  3. 实例:

    • 整数加法群到模 6 加法群的同态:设 ϕ : Z → Z / 6 Z \phi: \mathbb{Z} \to \mathbb{Z}/6\mathbb{Z} ϕ:ZZ/6Z 为同态映射,定义为:
      ϕ ( x ) = x m o d    6 \phi(x) = x \mod 6 ϕ(x)=xmod6
      映射将整数加法群 Z \mathbb{Z} Z 映射到模 6 加法群 Z / 6 Z \mathbb{Z}/6\mathbb{Z} Z/6Z

    • 计算核与像

      • :找出所有映射到 0 m o d    6 0 \mod 6 0mod6 的整数,即 ker ⁡ ( ϕ ) = 6 Z \ker(\phi) = 6\mathbb{Z} ker(ϕ)=6Z
      • :像是模 6 的所有元素,即 Im ( ϕ ) = Z / 6 Z \text{Im}(\phi) = \mathbb{Z}/6\mathbb{Z} Im(ϕ)=Z/6Z
二、群的同构(Group Isomorphism)
  1. 群同构的定义:

    • 群同构是群之间的一种强同态关系。设 G G G H H H 是两个群,若存在一个双射 ϕ : G → H \phi: G \to H ϕ:GH,使得对于所有 a , b ∈ G a, b \in G a,bG,有:
      ϕ ( a ∗ b ) = ϕ ( a ) ∗ ϕ ( b ) \phi(a * b) = \phi(a) * \phi(b) ϕ(ab)=ϕ(a)ϕ(b)
      则称 ϕ \phi ϕ 是一个群同构映射,且 G G G H H H 是同构群。
  2. 群同构的判定标准:

    • 如果两个群是同构群,它们有相同的结构,尤其是元素的阶和群的运算方式是等价的。
    • 同构群的判断标准
      • 如果两个群的阶不同,则它们不可能同构。
      • 对于有限群,若它们的元素阶相同,且运算结构相似,则可以推测它们同构。
  3. 实例:

    • 整数加法群与模 n n n 群的同构:对于群 Z \mathbb{Z} Z Z / n Z \mathbb{Z}/n\mathbb{Z} Z/nZ,我们知道它们在某些条件下是同构的。
      • 例如,群 Z / 6 Z \mathbb{Z}/6\mathbb{Z} Z/6Z Z 6 \mathbb{Z}_6 Z6 是同构群。
三、课堂活动
1. 通过例题讨论群同态与同构的应用

活动内容:

  • 例题 1: 考虑群 G = Z 8 G = \mathbb{Z}_8 G=Z8 和群 H = Z / 8 Z H = \mathbb{Z}/8\mathbb{Z} H=Z/8Z,讨论它们之间是否存在群同构,并进行详细的同态映射讨论。

    • 通过映射 ϕ : Z 8 → Z / 8 Z \phi: \mathbb{Z}_8 \to \mathbb{Z}/8\mathbb{Z} ϕ:Z8Z/8Z 验证其是否为群同构,并讨论映射的核和像。
  • 例题 2: 考虑群 G = S 3 G = S_3 G=S3(对称群)和群 H = Z 6 H = \mathbb{Z}_6 H=Z6,讨论它们是否同构,并给出判断标准。

2. 解决具体的群同态和同构问题

活动内容:

  • 例题 1: 考虑群 G = Z G = \mathbb{Z} G=Z H = Z / 4 Z H = \mathbb{Z}/4\mathbb{Z} H=Z/4Z,找出映射 ϕ : Z → Z / 4 Z \phi: \mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} ϕ:ZZ/4Z 的核和像。
  • 例题 2: 给定群 G = S 3 G = S_3 G=S3 H = Z 3 × Z 2 H = \mathbb{Z}_3 \times \mathbb{Z}_2 H=Z3×Z2,判断它们是否同构。

四、Python代码实现示例

群同态的计算:

import numpy as np

# 定义整数加法群和模 6 群的同态
def homomorphism(x, mod):
    return x % mod

# 计算同态的核(即所有映射到0的元素)
def kernel(group, mod):
    return [x for x in group if homomorphism(x, mod) == 0]

# 计算同态的像(即所有模6的元素)
def image(group, mod):
    return [homomorphism(x, mod) for x in group]

# 设定群 G = Z 和模6
G = np.arange(0, 12)  # 整数加法群Z的部分
mod = 6

# 计算核和像
ker = kernel(G, mod)
img = image(G, mod)

print(f"核:{ker}")
print(f"像:{img}")

群同构的判定:

# 检查两个群是否同构的基本方法(元素阶和群的结构相似性)
def are_isomorphic(group1, group2):
    # 判断两个群的阶是否相同
    if len(group1) != len(group2):
        return False
    # 检查两个群的元素阶是否相同
    for elem1 in group1:
        if elem1 not in group2:
            return False
    return True

# 示例:检查两个群是否同构
group1 = [0, 1, 2, 3, 4, 5]  # Z6群
group2 = [0, 1, 2, 3, 4, 5]  # Z6群

if are_isomorphic(group1, group2):
    print("这两个群是同构的!")
else:
    print("这两个群不是同构的。")

总结

通过这节课,将深入了解群同态与同构的概念,掌握群同态的核与像的计算方法,理解群同构的判定标准,并通过具体案例加深对群同态和同构在数学及实际应用中的理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值