&Title:
SNIPER: Efficient Multi-Scale Training
SNIPER- Efficient Multi-Scale Training(中文翻译)
&Summary
目前的目标检测架构都是对输入图像的所有像素进行操作,从而产生proposals等,当采用多尺寸的图像金字塔时,所需的存储空间很大,在训练时,单一GPU上能训练的图像数量很小(取决于GPU的显存和图像的分辨率),这样就造成了batch size很小,从而使训练时间很长。
但是现研究表明再进行多尺度训练的时候,实际上忽略一部分过大或者过小的目标是比较有利的。那这样的话,作者就认为我们每次都将全部图片都进行上下采样得到多尺度金字塔实际上没有必要。我们实际上可以用包围小目标的较小尺寸的图片碎片来进行训练和测试就可以加速训练和测试过程(SNIP的算法)。但在使用小图片来识别小目标的时候,由于小图片的上下文信息比较少,一般来说会提高假阳性率(false positive)。如何去平衡这个上下文信息和加速训练间的关系就是这篇文章的中心。
因此作者提出了一种新的训练思路:先粗略定位一下正负例所在的区域,然后以该区域内的像素信息作为卷积网络的输入,再精确检测出该区域内的所有正例和负例。
这样可以有限降低所需的存储空间,增加单一GPU上所能训练的图像的数量,显著提高训练速度。
(正例chips是通过ground truth bbox得到,负例chips是通过RPN网络产生的proposals得到。)