特征层面
论文中的创新点为特征融合方面相关的论文阅读记录
Activewaste
good good study,day day up
展开
-
【论文笔记】:Pyramid Feature Attention Network for Saliency detection
&TitlePyramid Feature Attention Network for Saliency detection代码&Summary在显著性检测算法中,如何提取到更有效的特征是该任务的难点之一。为了解决该问题,我们通过金字塔特征注意网络来注意高语义特征和低维空间结构特征。首先,使用上下文感知金字塔特征提取(Context-aware PyramidFeatureExtraction,CPFE)模块对高级多尺度信息捕捉丰富的语义信息。其次,在CPFE模块后加入通原创 2020-05-09 13:21:52 · 1867 阅读 · 0 评论 -
【论文笔记】:ASFF:Learning Spatial Fusion for Single-Shot Object Detection
&TitleASFF:Learning Spatial Fusion for Single-Shot Object Detection代码&Summary不同特征尺度之间的不一致性是基于特征金字塔的单阶段检测器的主要缺陷。本文提出了一种新的基于数据驱动的金字塔特征融合策略,称为自适应空间特征融合(ASFF)。它学习了空间过滤冲突信息的方法来抑制不一致性,从而提高了特...原创 2020-04-28 16:36:19 · 7091 阅读 · 3 评论 -
【论文笔记】:Enriched Feature Guided Refinement Network for Object Detection
&Title&Summary提出了一个单阶段检测框架,该框架解决了多尺度目标检测和类不平衡的问题。首先提出一个特征丰富模块用来提取上下文特征,将提取的多尺度上下文特征注入到一阶段检测器的预测层中,用来增强检测器的判别能力(丰富特征)。接着,提出了一个级联精炼方法,通过细化锚和丰富的特征 (来自特征丰富模块提取出来的上下文特征)来改善分类和回归。简单理解为:提出了一个级联精...原创 2020-04-27 23:20:34 · 1001 阅读 · 0 评论 -
【论文笔记】:TFPN: Twin Feature Pyramid Networks for Object Detection
&TitleTFPN: Twin Feature Pyramid Networks for Object Detection代码IEEE ICTAI2019&SummaryFPN可以通过增强浅层特征来改善小对象检测,但是对于大目标的检测性能不够好。目前主流的解决办法有两种,但都有各自的问题。于是作者提出了TFPN(双特征金字塔网络)结构,在保持FPN在小物体检测...原创 2020-04-22 23:51:06 · 1005 阅读 · 0 评论 -
【论文笔记】:Side-Aware Boundary Localization for More Precise Object Detection
&TitleSide-Aware Boundary Localization for More Precise Object Detection代码&Summary本文提出Side-Aware Boundary Localization(SABL)以取代传统的bbox回归。提取关注于边界内容的边缘感知特征用来定位。提出使用该特征的轻量级two-step bucketi...原创 2020-04-21 19:50:03 · 1248 阅读 · 0 评论 -
【论文笔记】:Object detection with location-aware deformable convolution and backward attention filtering
&TitleObject detection with location-aware deformable convolution and backward attention filtering代码&Summary本文提出了location-aware deformable convolution以及backward attention filtering模块以提高...转载 2020-04-20 10:37:40 · 725 阅读 · 0 评论 -
Deformable Convolutional Networks
一、摘要由于构造卷积神经网络 (CNN) 所用的模块中几何结构是固定的,其几何变换建模的能力本质上是有限的。在我们的工作中,我们引入了两种新的模块来提高卷积神经网络 (CNN) 对变换的建模能力,即可变形卷积 (deformable convolution) 和可变形兴趣区域池化 (deformable ROI pooling)。它们都是基于在模块中对空间采样的位置信息作进一步位移调整的想法,该...转载 2020-04-03 17:11:51 · 352 阅读 · 0 评论 -
【论文笔记】:Cascade RetinaNet
&TitleCascade RetinaNet:Maintaining Consistency for Single-Stage Object Detection(BMVC2019)论文翻译代码&Summary:Motivation作者认为RetinaNet天真的直接将相同设置的多级串联在一起是没有多大收获,主要是类别的置信度和坐标之间的错误联系,以及不同Stag...原创 2020-03-30 10:42:04 · 1016 阅读 · 1 评论 -
【论文笔记】:SAPD
&TitleSoft Anchor-Point Object Detection论文翻译代码&Summary问题:how to make the anchor-free detection head better?how to utilize the power of feature pyramid better?解决方法: soften optimiza...原创 2020-03-26 21:35:32 · 3196 阅读 · 1 评论 -
【论文笔记】:MatrixNet
&TitleMatrix Nets: A New Deep Architecture for Object Detection代码&Summary介绍了矩阵网(xNets),这是一种用于目标检测的新的深层体系结构。xNets将具有不同大小和纵横比的对象映射到层中,其中层中对象的大小和纵横比几乎是一致的。 因此,xNets提供了比例和纵横比感知的体系结构。XNets...原创 2020-03-19 15:33:52 · 850 阅读 · 0 评论 -
【论文笔记】:EFPN
&TitleExtended Feature Pyramid Network for Small Object Detection代码&Summary挑战: 小物体检测仍然是一个尚未解决的挑战,因为很难仅提取几个像素的小物体信息。先前工作: 虽然在特征金字塔网络中进行尺度级别的相应检测可以缓解此问题,但我们发现各种尺度的特征耦合仍然会损害小物体的性能。ours m...原创 2020-03-19 13:48:31 · 3221 阅读 · 19 评论 -
【论文笔记】:Residual Bi-Fusion Feature Pyramid Network for Accurate Single-shot Object Detection
&TitleResidual Bi-Fusion Feature Pyramid Network for Accurate Single-shot Object Detection 代码&Summary原始FP缺乏自下而上的途径来抵消来自较低层特征图的丢失信息。它在大型目标检测中表现良好,但在小型目标检测中表现较差。本文提出了一种新的结构“残差金字塔”。双向融合深度...原创 2020-02-24 23:33:10 · 3156 阅读 · 1 评论 -
【论文笔记】:IPG-Net: Image Pyramid Guidance Network for Object Detection
&Title:IPG-Net: Image Pyramid Guidance Network for Object Detection目前只是公开在arxiv上&Summary在深度卷积网络中,随着卷积层变得更深而导致位置或空间信息的丢失,这种空间信息的丢失导致目标检测中的特征未对准。这里,特征未对齐意味着锚点和卷积特征之间存在一些偏移。除了对视空间信息外,较小的目标...原创 2020-01-10 16:36:13 · 2478 阅读 · 0 评论 -
【论文笔记】:YOLO v3
&TitleYOLOv3: An Incremental Improvement&Summary两点改进对结果提升比较大:fpn的特征融合(借鉴FPN)改基础网络(借鉴resnet)相比于YOLOv2,改进的地方有:引入了一个新的基础网络,bundingbox取最好预测框的去训练,其他框丢掉,用了FPN,丢掉了softmax改用二元交叉熵。对小目标的检测效果...原创 2020-02-14 14:58:32 · 400 阅读 · 0 评论 -
【论文笔记】:Learning Rich Features at High-Speed for Single-Shot Object Detection
&Title:ICCV 2019Learning Rich Features at High-Speed for Single-Shot Object Detection代码&Summary作者设计了一个one-stage检测框架,它结合了微调预训练模型和从零开始训练的优点。该框架包括一个预训练过的标准backbone网络,一个轻量级的从零开始训练的辅助网络。此外,...原创 2020-02-16 14:06:59 · 2164 阅读 · 0 评论 -
【论文笔记】:NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection
&Title:NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection&Summary目前最先进的卷积结构用于物体检测是手工设计的。在这里,我们的目标是一个更好的学习可扩展特征金字塔结构,用于目标检测。在一个覆盖所有交叉尺度连接的可扩展搜索空间中,采用神经网络结构搜索,发现了...原创 2019-08-06 11:34:50 · 11045 阅读 · 7 评论 -
【论文笔记】:FPN
TitleFeature Pyramid Networks for Object DetectionSummary文章的思想比较简单,主要是利用特征金字塔对不同层次的特征进行尺度变化后,再进行信息融合,从而可以提取到比较低层的信息,也就是相对顶层特征来说更加详细的信息。顶层特征在不断地卷积池化过程中可能忽略了小物体的一些信息,特征金字塔通过不同层次的特征融合,使得小物体的信息也能够比较完整地...原创 2019-07-11 16:44:21 · 595 阅读 · 0 评论 -
【论文笔记】:DuBox: No-Prior Box Objection Detection via Residual Dual Scale Detectors
&Title:DuBox: No-Prior Box Objection Detection via Residual Dual Scale DetectorsGithub addr None&Summary介绍了一种新的一步检测方法Dubox,它可以在没有先验框的情况下检测物体。设计的双尺度残差单元具有多尺度特性,使双尺度检测器不再独立运行。高层检测器学习低层检测器的...原创 2019-10-27 11:35:57 · 773 阅读 · 0 评论 -
【论文笔记】:Libra R-CNN: Towards Balanced Learning for Object Detection
&Title:FCOS: Fully Convolutional One-Stage Object Detection&Summary检测不平衡问题包括:样本层面(sample level)、特征层面(feature level)、训练目标层面(objective level)。Libra R-CNN,一个针对目标检测平衡学习的简单有效框架。该框架集成了三个组件:IoU-b...转载 2019-11-23 22:26:29 · 1391 阅读 · 0 评论 -
【论文笔记】:RefineDet
Single-Shot Refinement Neural Network for Object Detection代码主要思想引入two stage类型的object detection算法中对box的由粗到细的回归思想(由粗到细回归其实就是先通过RPN网络得到粗粒度的box信息,然后再通过常规的回归支路进行进一步回归从而得到更加精确的框信息,这也是two stage类型的o...转载 2019-11-30 15:11:54 · 345 阅读 · 0 评论 -
【论文笔记】:Deep Feature Pyramid Reconfiguration for Object Detection
&TitleDeep Feature Pyramid Reconfiguration for Object Detection代码&Summary目前最好的目标检测器大多通过特征金字塔来学习多尺度表示从而取得更高的检测精度。然而,当前特征金字塔的设计在如何整合不同尺度的语义信息方面仍然不够高效。为此,本文在调研当前主流特征金字塔方法的基础上把特征金字塔转换为特征的再组...原创 2019-11-30 15:50:50 · 631 阅读 · 0 评论