&Title:
CrowdHuman: A Benchmark for Detecting Human in a Crowd
&Summary
CrowdHuman的训练集、验证集和测试集分别包括15000,4370和5000幅图像。图片上的人体实例包含了三种标注,包括人体可见区域边界框标注、头部区域边界框标注和人体整体边界框标注。其设计是为了解决人群问题,可以更好的评估拥挤情况下的检测器。
&Research Objective
我们的目标是针对拥挤人群的情景推进人体检测的研究。我们收集并标注了一个大数据集,称为CrowdHuman,有大量的行人人群。
CrowdHuman的训练集、验证集和测试集分别包括15000,4370和5000幅图像。数据集进行了完全标注,包含众多场景。在训练集和验证集中共计有47万个人体实例,每幅图中的平均行人数量为22.6。我们还给出了三种标注,包括人体可见区域边界框标注、头部区域边界框标注和人体整体边界框标注。
&Problem Statement
- 行人检测数据集的先驱工作有INRIA,TudBrussels和Daimler、更大规模的数据集