【论文笔记】:CrowdHuman: A Benchmark for Detecting Human in a Crowd

CrowdHuman是一个大规模的人体检测数据集,专为解决拥挤人群检测挑战而设计。它包含三种标注类型:整体边界框、可见区域边界框和头部边界框。与现有数据集相比,CrowdHuman具有更高的密度和更大的规模,提供了一个更准确评估检测算法的基准。
摘要由CSDN通过智能技术生成

&Title:

CrowdHuman: A Benchmark for Detecting Human in a Crowd

&Summary

CrowdHuman的训练集、验证集和测试集分别包括15000,4370和5000幅图像。图片上的人体实例包含了三种标注,包括人体可见区域边界框标注、头部区域边界框标注和人体整体边界框标注。其设计是为了解决人群问题,可以更好的评估拥挤情况下的检测器。

&Research Objective

我们的目标是针对拥挤人群的情景推进人体检测的研究。我们收集并标注了一个大数据集,称为CrowdHuman,有大量的行人人群。

CrowdHuman的训练集、验证集和测试集分别包括15000,4370和5000幅图像。数据集进行了完全标注,包含众多场景。在训练集和验证集中共计有47万个人体实例,每幅图中的平均行人数量为22.6。我们还给出了三种标注,包括人体可见区域边界框标注头部区域边界框标注人体整体边界框标注

&Problem Statement

  • 行人检测数据集的先驱工作有INRIA,TudBrussels和Daimler、更大规模的数据集
HPO-B是一个基于OpenML的大规模可复现的黑盒超参数优化(HPO)基准。超参数优化是机器学习中非常重要的一环,它涉及在给定的模型框架下选择最优的超参数配置,以提高模型的性能和泛化能力。 HPO-B基准的目的是为了提供一个可靠且可复现的平台,用于评估不同HPO方法的效果。通过使用OpenML作为基础数据集和算法库,HPO-B能够提供广泛的机器学习任务和模型,从而覆盖不同领域的实际应用。 HPO-B基准的黑盒性质意味着它仅仅观察模型的输入和输出,而不考虑模型内部的具体实现。这种设置模拟了现实世界中许多机器学习任务的情况,因为在实际应用中,我们通常无法获得关于模型的全部信息。 HPO-B基准旨在解决现有HPO方法的一些挑战,例如难以比较和复制不同方法之间的实验结果。它通过提供标准任务、固定的训练-验证-测试数据分割方式和一致的评估协议,使得不同方法之间的比较更加公平和可靠。 通过使用HPO-B基准,研究人员和从业者可以在统一的实验环境中进行黑盒超参数优化方法的评估和对比。这有助于推动该领域的发展,促进更好的超参数优化算法的提出和运用。 总而言之,HPO-B是一个基于OpenML的大规模可复现的黑盒超参数优化基准,旨在解决现有方法比较困难和结果复现性差的问题,并推动超参数优化算法的发展。它为机器学习任务提供了一个统一的实验平台,以评估不同方法在不同领域的性能。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值