随机变量的数字特征

备忘录

均值与期望

  • 均值其实是针对实验观察到的特征样本 { x 1 , x 2 , ⋯   , x N } \{x_1,x_2,\cdots,x_N\} {x1,x2,,xN}而言的,是一个统计量(对观察样本的统计)。
    r = x 1 + x 2 + ⋯ + x N N (1.1) r=\frac{x_1+x_2+\cdots+x_N}{N}\tag{1.1} r=Nx1+x2++xN(1.1)

  • 期望是针对于随机变量而言的一个量,可以理解是一种站在“上帝视角”的值。针对于他的样本空间而言的,是一种概率论概念,是一个数学特征。

离散型随机变量 X X X的分布律为:
P { X = x k } = p k , k = 1 , 2 , ⋯   . P\{X=x_k \}=p_k,\quad k=1,2,\cdots. P{X=xk}=pk,k=1,2,.
若级数
∑ k = 1 ∞ x k p k \sum_{k=1} ^\infty x_k p_k k=1xkpk
绝对收敛,则称级数 ∑ k = 1 ∞ x k p k \sum_{k=1} ^\infty x_k p_k k=1xkpk的和为随机变量 X X X数学期望,记为 E ( X ) E(X) E(X)。即
E ( X ) = ∑ k = 1 ∞ x k p k (1.2) E(X)=\sum_{k=1} ^\infty x_k p_k\tag{1.2} E(X)=k=1xkpk(1.2)

连续型随机变量 X X X的概率密度为 f ( x ) f(x) f(x),若积分为:
∫ ∞ ∞ x f ( x ) d x \int_\infty^\infty xf(x)dx xf(x)dx
绝对收敛,则称积分 ∫ ∞ ∞ x f ( x ) d x \int_\infty^\infty xf(x)dx xf(x)dx的值为随机变量 X X X数学期望,记为 E ( X ) E(X) E(X)。即
E ( X ) = ∫ ∞ ∞ x f ( x ) d x (1.3) E(X)= \int_\infty^\infty xf(x)dx\tag{1.3} E(X)=xf(x)dx(1.3)

  • 定理 Y Y Y是随机变量 X X X的函数: Y = g ( X ) Y=g(X) Y=g(X) g g g是连续函数)
    (i)如果 X X X是离散型随机变量,他的分布律为 P = { X = x k } = p k , k = 1 , 2 , ⋯   , P=\{X=x_k\}=p_k,k=1,2,\cdots, P={X=xk}=pk,k=1,2,, ∑ k = 1 ∞ g ( x k ) p k \sum_{k=1}^{\infty}g(x_k)p_k k=1g(xk)pk绝对收敛,则有
    E ( Y ) = E [ g ( X ) ] = ∑ k = 1 ∞ g ( x k ) p k (1.4) E(Y)=E[g(X)]=\sum_{k=1}^{\infty}g(x_k)p_k\tag{1.4} E(Y)=E[g(X)]=k=1g(xk)pk(1.4)
    (ii)如果 X X X是连续型随机变量,它的概率密度为 f ( x ) f(x) f(x),若 ∫ − ∞ ∞ g ( x ) f ( x ) d x \int^\infty_{-\infty}g(x)f(x)dx g(x)f(x)dx绝对收敛,则有
    E ( Y ) = E [ g ( X ) ] = ∫ − ∞ ∞ g ( x ) f ( x ) d x (1.5) E(Y)=E[g(X)]=\int^\infty_{-\infty}g(x)f(x)dx\tag{1.5} E(Y)=E[g(X)]=g(x)f(x)dx(1.5)
  • 期望的性质
    1˚设 C C C是常数,则有 E ( C ) = C E(C)=C E(C)=C
    2˚设 X X X是一个随机变量, C C C是一个常数,则有
    E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X)
    3˚设 X , Y X,Y XY是两个随机变量,则有
    E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
    4˚设 X , Y X,Y XY是相互独立的随机变量,则有
    E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

方差

  • X X X是一个随机变量,若 E { [ X − E ( X ) ] 2 } E\{[X-E(X)]^2\} E{[XE(X)]2}存在,则称 E { [ X − E ( X ) ] 2 } E\{[X-E(X)]^2\} E{[XE(X)]2} X X X方差,记为 D ( X ) D(X) D(X) V a r ( X ) Var(X) Var(X),即
    D ( X ) = V a r ( X ) = E { [ X − E ( X ) ] 2 } (2.1) D(X)=Var(X)=E\{[X-E(X)]^2\}\tag{2.1} D(X)=Var(X)=E{[XE(X)]2}(2.1)
    在应用上还引入量 D ( X ) \sqrt{D(X)} D(X) ,记为记为 σ ( X ) \sigma(X) σ(X),称为标准差均方差

随机变量 X X X的方差表达了 X X X的取值与其数学期望的偏离程度,若 D ( X ) D(X) D(X)较小意味着 X X X的取值比较集中在 E ( X ) E(X) E(X)的附近,反之,若 D ( X ) D(X) D(X)较大则表示 X X X的取值较分散。因此, D ( X ) D(X) D(X)是刻画 X X X的取值分散程度的一个量。

由定义知道,方差实际上就是随机变量 X X X的函数 g ( X ) = ( X − E ( X ) ) 2 g(X)=(X-E(X))^2 g(X)=(XE(X))2的数学期望,于是对于离散型随机变量,按公式(1.4)有
D ( X ) = ∑ k = 1 ∞ [ x k − E ( X ) ] 2 p k (2.2) D(X)=\sum_{k=1}^{\infty}[x_k-E(X)]^2p_k\tag{2.2} D(X)=k=1[xkE(X)]2pk(2.2)
其中 P { X = x k } − p k , k = 1 , 2 , ⋯ P\{X=x_k\}-p_k,k=1,2,\cdots P{X=xk}pk,k=1,2, X X X的分布律。

对于连续型随机变量,按公式(1.5)有
D ( X ) = ∫ − ∞ ∞ [ x − E ( X ) ] 2 f ( x ) d x (2.3) D(X)=\int_{-\infty}^\infty [x-E(X)]^2f(x)dx\tag{2.3} D(X)=[xE(X)]2f(x)dx(2.3)

随机变量 X X X的方差,可按下列公式计算
D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 (2.4) D(X)=E(X^2)-[E(X)]^2\tag{2.4} D(X)=E(X2)[E(X)]2(2.4)

  • 方差的性质
    1˚设 C C C是常数,则有 D ( C ) = C D(C)=C D(C)=C
    2˚设 X X X是一个随机变量, C C C是一个常数,则有
    D ( C X ) = C 2 D ( X ) D ( X + C ) = D ( X ) \begin{aligned} D(CX)&=C^2D(X)\\ D(X+C)&=D(X) \end{aligned} D(CX)D(X+C)=C2D(X)=D(X)
    3˚设 X , Y X,Y XY是两个随机变量,则有
    D ( X + Y ) = D ( X ) + D ( Y ) + 2 E ( X − E ( X ) ) ( Y − E ( Y ) ) (2.5) D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(Y))}\tag{2.5} D(X+Y)=D(X)+D(Y)+2E(XE(X))(YE(Y))(2.5)
    特别的,若 X , Y X,Y XY是相互独立,则有
    D ( X + Y ) = D ( X ) + D ( Y ) (2.6) D(X+Y)=D(X)+D(Y)\tag{2.6} D(X+Y)=D(X)+D(Y)(2.6)
    D ( X ) = 0 D(X)=0 D(X)=0的充要条件是 X X X以概率1取常数 E ( X ) E(X) E(X),即
    P { X = E ( X ) } = 1 P\{X=E(X)\}=1 P{X=E(X)}=1

协方差

  • 定义:量 E { [ X − E ( X ) ] [ Y − E ( Y ) ] } E\{ [X-E(X)] [Y-E(Y)]\} E{[XE(X)][YE(Y)]}称为随机变量 X X X Y Y Y协方差。记为 C o v ( X , Y ) Cov(X,Y) Cov(X,Y),即
    C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } . Cov(X,Y)=E\{ [X-E(X)] [Y-E(Y)]\}. Cov(X,Y)=E{[XE(X)][YE(Y)]}.

    ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) \rho_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρXY=D(X) D(Y) Cov(X,Y)
    称为随机变量 X X X Y Y Y相关系数

  • 关于相关系数
    ∣ ρ X Y ∣ ≤ 1 |\rho_{XY}|\leq1 ρXY1
    ∣ ρ X Y ∣ = 1 |\rho_{XY}|=1 ρXY=1的充要条件是,存在常数 a , b a,b ab使
    P { Y = a + b X } = 1 P\{Y=a+bX\}=1 P{Y=a+bX}=1
    ∣ ρ X Y ∣ |\rho_{XY}| ρXY较大时,我们称 X X X Y Y Y线性相关程度较好,反之则较差。
    ∣ ρ X Y ∣ = 0 |\rho_{XY}|=0 ρXY=0时,称 X X X Y Y Y不相关

  • 由定义即知
    C o v ( X , Y ) = C o v ( Y , X ) C o v ( X , X ) = D ( X ) \begin{aligned} Cov(X,Y)&=Cov(Y,X)\\ Cov(X,X)&=D(X) \end{aligned} Cov(X,Y)Cov(X,X)=Cov(Y,X)=D(X)
    由上述定义及(2.5)知,对于任意两个随机变量 X X X Y Y Y,下列等式成立:
    D ( X + Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) (3.1) D(X+Y)=D(X)+D(Y)+2Cov(X,Y)\tag{3.1} D(X+Y)=D(X)+D(Y)+2Cov(X,Y)(3.1)
    C o v ( X , Y ) Cov(X,Y) Cov(X,Y)的定义式展开,易得
    C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) (3.2) Cov(X,Y)=E(XY)-E(X)E(Y)\tag{3.2} Cov(X,Y)=E(XY)E(X)E(Y)(3.2)
    我们常用这个式子计算协方差

  • 协方差具有下述性质:
    C o v ( a X , b Y ) = a b C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(aX,bY)=abCov(X_1,Y)+Cov(X_2,Y) Cov(aX,bY)=abCov(X1,Y)+Cov(X2,Y), a , b a,b a,b是常数。
    C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)

协方差矩阵

X X X Y Y Y是随机变量。


  • E ( X k ) , k = 1 , 2 , ⋯ E(X^k),k=1,2,\cdots E(Xk),k=1,2,
    存在,称它为 X X X k k k阶原点矩,简称 k k k阶矩


  • E { [ X − E ( X ) ] k } , k = 1 , 2 , ⋯ E\{[X-E(X)]^k\},k=1,2,\cdots E{[XE(X)]k},k=1,2,
    存在,称它为 X X X k k k阶中心矩


  • E ( X k Y l ) , k , l = 1 , 2 , ⋯ E(X^kY^l),k,l=1,2,\cdots E(XkYl),k,l=1,2,
    存在,称它为 X X X Y Y Y k + l k+l k+l阶混合矩


  • E { [ X − E ( X ) ] k [ Y − E ( Y ) ] l } , k , l = 1 , 2 , ⋯ E\{[X-E(X)]^k[Y-E(Y)]^l\},k,l=1,2,\cdots E{[XE(X)]k[YE(Y)]l},k,l=1,2,
    存在,称它为 X X X Y Y Y k + l k+l k+l阶混合中心矩

显然, X X X的数学期望 E ( X ) E(X) E(X) X X X一阶原点矩。方差 D ( X ) D(X) D(X) X X X二阶中心矩,协方差 C o v ( X , Y ) Cov(X,Y) Cov(X,Y) X X X Y Y Y二阶混合中心矩

  • 定义:
    n n n维随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) X1,X2,,Xn的二阶混合中心矩 c i j = C o v ( X , Y ) = E { [ X i − E ( X i ) [ X j − E ( X j ) } , i , j = 1 , 2 , ⋯   , n c_ij=Cov(X,Y)=E\{[X_i-E(X_i)[X_j-E(X_j)\},i,j=1,2,\cdots,n cij=Cov(X,Y)=E{[XiE(Xi)[XjE(Xj)},i,j=1,2,,n都存在,则称矩阵

C = [ C 11 C 12 ⋯ C 1 n C 21 C 22 ⋯ C 2 n ⋮ ⋮ ⋱ ⋮ C n 1 C n 2 ⋯ C n n ] C= \begin{bmatrix} C_{11} & C_{12} &\cdots& C_{1n} \\ C_{21} & C_{22} &\cdots& C_{2n}\\ \vdots& \vdots &\ddots&\vdots\\ C_{n1} & C_{n2} &\cdots& C_{nn} \\ \end{bmatrix} C=C11C21Cn1C12C22Cn2C1nC2nCnn
n n n维随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) X1,X2,,Xn协方差矩阵。是一个对称矩。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值