概率论笔记—随机变量的数字特征

一、一维随机变量的数字特征

1. 数学期望

① 如果 X X X离散型随机变量,其分布列为 p i = P { X = x i } ( i = 1 , 2 , ⋅ ⋅ ⋅ ) p_i=P\{ X=x_i \} (i=1,2,···) pi=P{X=xi}(i=1,2,)。若级数 ∑ i = 1 ∞ x i p i \sum \limits^{\infty} _{i=1} x_i p_i i=1xipi绝对收敛,则称随机变量 X X X的数学期望存在,并将级数和 ∑ i = 1 ∞ x i p i \sum \limits^{\infty} _{i=1} x_i p_i i=1xipi称为随机变量 X X X数学期望,记为 E ( X ) E(X) E(X) E X EX EX,即 E X = ∑ i = 1 ∞ x i p i EX = \sum \limits^{\infty} _{i=1} x_i p_i EX=i=1xipi

② 如果 X X X连续型随机变量,其概率密度为 f ( x ) f(x) f(x)。若积分 ∫ − ∞ + ∞ x f ( x ) d x \int ^{+\infty} _{-\infty} xf(x)dx +xf(x)dx绝对收敛,则称 X X X数学期望存在,且 E X = ∫ − ∞ + ∞ x f ( x ) d x EX = \int ^{+\infty} _{-\infty} xf(x)dx EX=+xf(x)dx。否则称 X X X的数学期望不存在。

注:数学期望又称概率平均值,简称期望或均值。数学期望是描述随机变量平均取值状况特征的指标,它描述随机变量的一切可能值的集中位置。

2. 方差和标准差

X X X是随机变量,如果 E [ ( X − E X ) 2 ] E[(X-EX)^2] E[(XEX)2]存在,则称 E [ ( X − E X ) 2 ] E[(X-EX)^2] E[(XEX)2] X X X方差,记为 D X DX DX,即:
D X = E [ ( X − E X ) 2 ] = E ( X 2 ) − ( E X ) 2 DX= E[(X-EX)^2] = E(X^2) - (EX)^2 DX=E[(XEX)2]=E(X2)(EX)2
D X \sqrt {DX} DX 标准差或均方差,记为 σ ( X ) \sigma (X) σ(X),称随机变量 X ∗ = X − E X D X X^* = \frac {X-EX} {\sqrt {DX}} X=DX XEX X X X的标准化随机变量,此时 E X ∗ = 0 , D X ∗ = 1 EX^*=0,DX^*=1 EX=0,DX=1

3. 切比雪夫不等式

如果随机变量 X X X的方差 D X DX DX存在,则对任意 ϵ > 0 \epsilon >0 ϵ>0,有:
P { ∣ X − E X ∣ ≤ ϵ } ≥ D X ϵ 2 P\{ |X-EX|\le \epsilon \} \ge \frac {DX} {\epsilon ^2} P{XEXϵ}ϵ2DX

二、二维随机变量的数字特征

1. 二维随机变量函数的数学期望

X , Y X,Y X,Y为随机变量, g ( X , Y ) g(X,Y) g(X,Y) X , Y X,Y X,Y的函数。

① 如果 ( X , Y ) (X,Y) (X,Y)离散型随机变量,其联合分布为:
p i j = P { X = x i , Y = y j } ( i , j = 1 , 2 , ⋅ ⋅ ⋅ ) p_{ij} = P\{ X=x_i,Y=y_j \} (i,j=1,2,···) pij=P{X=xi,Y=yj}(i,j=1,2,)
若级数 ∑ i ∑ j g ( x i , y j ) p i j \sum \limits _i \sum \limits _j g(x_i,y_j)p_{ij} ijg(xi,yj)pij绝对收敛,则定义:
E [ g ( X , Y ) ] = ∑ i ∑ j g ( x i , y j ) p i j E[ g(X,Y) ] = \sum \limits _i \sum \limits _j g(x_i,y_j)p_{ij} E[g(X,Y)]=ijg(xi,yj)pij
② 如果 ( X , Y ) (X,Y) (X,Y)连续型随机变量,其概率密度为 f ( x , y ) f(x,y) f(x,y),若积分 ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y \int ^{+\infty} _{-\infty} \int ^{+\infty} _{-\infty} g(x,y)f(x,y)dxdy ++g(x,y)f(x,y)dxdy绝对收敛,则定义:
E [ g ( X , Y ) ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y E[ g(X,Y) ] = \int ^{+\infty} _{-\infty} \int ^{+\infty} _{-\infty} g(x,y)f(x,y)dxdy E[g(X,Y)]=++g(x,y)f(x,y)dxdy

2. 协方差和相关系数

如果随机变量 X , Y X,Y X,Y的方差存在且 D X > 0 , D Y > 0 DX>0,DY>0 DX>0,DY>0,则称 E [ ( X − E X ) ( Y − E Y ) ] E[(X-EX)(Y-EY)] E[(XEX)(YEY)]为随机变量 X , Y X,Y X,Y协方差,并记为 C o v ( X , Y ) Cov(X,Y) Cov(X,Y),即:
C o v ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ] = E ( X Y ) − E X ⋅ E Y Cov(X,Y) = E[(X-EX)(Y-EY)] = E(XY) - EX · EY Cov(X,Y)=E[(XEX)(YEY)]=E(XY)EXEY
其中:
E ( X Y ) = { ∑ i ∑ j x i y j P { X = x i , Y = y j }   ( 离 散 型 ) ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f ( x , y ) d x d y   ( 连 续 型 ) E(XY) = \begin{cases} \sum \limits _i \sum \limits _j x_i y_j P\{ X=x_i,Y=y_j \} \ (离散型) \\\\ \int ^{+\infty} _{-\infty} \int ^{+\infty} _{-\infty} xyf(x,y)dxdy \ (连续型) \end{cases} E(XY)=ijxiyjP{X=xi,Y=yj} ()++xyf(x,y)dxdy ()
ρ X Y = C o v ( X , Y ) D X D Y \rho_{XY}= \frac {Cov(X,Y)} {\sqrt {DX} \sqrt {DY}} ρXY=DX DY Cov(X,Y)为随机变量 X , Y X,Y X,Y的相关系数。如果 ρ X Y = 0 \rho_{XY} = 0 ρXY=0,则称 X , Y X,Y X,Y不相关;如果 ρ X Y ≠ 0 \rho_{XY} \ne 0 ρXY=0,则称 X , Y X,Y X,Y相关。

注:随机变量 X , Y X,Y X,Y不相关,指 X X X Y Y Y之间不存在线性相关性, ρ X Y = 0 \rho_{XY} = 0 ρXY=0。但可能还存在非线性相关关系。

三、独立性与相关性

随机变量 X , Y X,Y X,Y相互独立,指对任意实数 x , y x,y x,y,事件 { X ≤ x } \{ X \le x \} {Xx} { Y ≤ y } \{ Y \le y \} {Yy}相互独立,即 ( X , Y ) (X,Y) (X,Y)的联合分布等于边缘分布相乘: F ( x , y ) = F X ( x ) ⋅ F Y ( y ) F(x,y) = F_X(x)·F_Y(y) F(x,y)=FX(x)FY(y)

① 连续型, X , Y X,Y X,Y相互独立:
f ( x , y ) = f X ( x ) ⋅ f Y ( y ) f(x,y) = f_X(x)·f_Y(y) f(x,y)=fX(x)fY(y)
② 离散型, X , Y X,Y X,Y相互独立:
P { X ≤ x i , Y ≤ y j } = P { X ≤ x i } ⋅ P { Y ≤ y j } P\{ X \le x_i,Y \le y_j \} = P\{ X \le x_i \} · P\{ Y \le y_j \} P{Xxi,Yyj}=P{Xxi}P{Yyj}

注:
① 如果 X , Y X,Y X,Y独立,则 X , Y X,Y X,Y不相关,反之不然。
② 如果 X , Y X,Y X,Y相关,则 X , Y X,Y X,Y不独立,反之不然。
③ 如果 ( X , Y ) (X,Y) (X,Y)服从二维正态分布,则 X , Y X,Y X,Y独立 ⇔ X , Y \Leftrightarrow X,Y X,Y不相关。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ta o

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值