-
问题:
如上图,找v3结点到其他六个结点的最短路径? -
基本思路:类似于BFS
- 这里需要两个数组:dist[i]用来存放结点v3到结点 i 的最短距离;path[i]用来存放最短路径中结点 i 的上一个结点,例d[i]=v3意思就是v3的下一步到 i
- 基本思路:把初始结点入队,然后出队一个结点p,对于p的每个相邻结点 i 入队,并且设置dist【i】=dist【p】+1;path【i】=p;
- 如下图(下图是最终结果)
- v3结点到其他结点的最短路径就是倒着一次找path,例;3 结点到 7 结点的最短路径就是:path【7】=4,path【4】=1,path【1】=3,path【3】=-1(初始结点),所以就是3–>1–>4–>7
-
代码
这里为了简便,我就用数组代替了入队出队
#include <stdio.h>
#include <stdlib.h>
# define SIZE 7
#define ElementType int
int edge[SIZE+1][SIZE+1]={0};
ElementType queue[SIZE];
ElementType dist[SIZE+1];
ElementType path[SIZE+1]={-1};
int in=0;//入队指针
int out=0;//出队指针
void ShortestPath(ElementType v)
{
queue[in++]=v;
int p;
while(in!=out)
{
p=queue[out++];
for(int i=1;i<=SIZE;i++)
{
if(edge[p][i]==1 && dist[i]==-1)
{
dist[i]=dist[p]+1;
path[i]=p;
queue[in++]=i;
}
}
}
}
int main(int argc, char** argv) {
int num_edge;
scanf("%d",&num_edge);
int start,end;
for(int i=0;i<num_edge;i++)
{
scanf("%d %d",&start,&end);
edge[start][end]=1;
}
for(int i=1;i<=SIZE;i++)
{
dist[i]=-1;
path[i]=-1;
}
dist[3]=0;//初始结点是3,3走到3是不用走的,距离是0
ShortestPath(3);
for(int i=1;i<=SIZE;i++)
{
int location=i;
while(location!=-1)
{
printf("%d ",location);
location=path[location];
}
printf("\n");
}
return 0;
}
/*
输入样例:
12
1 2
1 4
2 4
2 5
3 1
3 6
4 3
4 5
4 6
4 7
5 7
7 6
*/