dijkstra算法求单源最短路径(C语言)

Dijkstra算法用于求解单源最短路径问题,即从一个起始节点到图中其他所有节点的最短路径

  1. 使用邻接矩阵: 邻接表在内存管理上更灵活,但会增加代码行数。邻接矩阵更简洁,但空间复杂度更高。对于小型图,这是可以接受的。

  2. 省略错误处理: 为了精简代码,我们省略了内存分配错误的检查。 实际应用中,这非常重要,但在教学示例中可以忽略。

  3. 简化输出: 只输出源点到其他节点的最短距离,不输出路径。

以下是一个简化的Dijkstra算法C代码,使用邻接矩阵,大约20行:

#include <stdio.h>
#include <limits.h>

#define INF INT_MAX
#define V 5 // 顶点数,需要修改

int main() {
   
    int graph[V][V] = {
   
        {
   0, 4, 1, INF, INF},
        {
   4, 0, 2, 1, INF},
        {
   1, 2, 0, 5, INF},
        {
   INF, 1, 5, 0, 3},
        {
   INF, INF, INF, 3, 0}
    }; // 邻接矩阵表示图

    int dist[V];
    int visited[V] = {
   0};
    int src = 0;

    for (int i = 0; i < V; i++) dist[i] = INF;
    dist[src] = 0;

    for (int count = 0; count < V - 1; count++) {
   
        int u = -1;
        for (int v = 0; v < V; v++)
            if (!visited[v] && (u == -1 || dist[v] < dist[u])) u = v;
        visited[u] = 1;
        for (int v = 0; v < V; v++)
            if 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值