CNN推理和动态shape

通过对应维度设为-1表示该维度动态取值

例如要设定输入的batchsize和h,w都为动态的:

nvinfer1::ITensor* input = network->addInput("image", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4(-1, num_input, -1, -1));

编译时配置OptimizationProfile实现动态shape

其中三个值可选,分别为KMIN,KOPT,KMAX,即最小,最适和最大,推理时在最小和最大范围内都可。

auto profile = builder->createOptimizationProfile();


//范围在(1,1,3,3)和(10,1,5,5)
profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kMIN, nvinfer1::Dims4(1, num_input, 3, 3));
profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kOPT, nvinfer1::Dims4(1, num_input, 3, 3));
rofile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kMAX, nvinfer1::Dims4(maxBatchSize, num_input, 5, 5));

config->addOptimizationProfile(profile);

推理时需要明确尺寸

execution_context->setBindingDimensions(0, nvinfer1::Dims4(ib, 1, ih, iw));

bindings[0]为输入。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: CNN(卷积神经网络)是一种用于图像分类的深度学习模型。通过卷积层、池化层和全连接层的组合,CNN能够从输入的图像中提取特征并进行分类。下面是一个简单的CNN分类代码示例: 首先,导入必要的库和模块,如tensorflow和keras: import tensorflow as tf from tensorflow import keras 接下来,定义CNN模型。可以使用Sequential类来顺序地构建模型,也可以使用Functional API进行更灵活的模型定义。在本例中,我们使用Sequential类: model = keras.Sequential() 添加卷积层和池化层: model.add(keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu', input_shape=(28, 28, 1))) # 输入图像大小为28x28,通道数为1 model.add(keras.layers.MaxPooling2D(pool_size=(2, 2))) 继续添加卷积层和池化层: model.add(keras.layers.Conv2D(filters=64, kernel_size=3, activation='relu')) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2))) 添加全连接层: model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(units=128, activation='relu')) model.add(keras.layers.Dense(units=10, activation='softmax')) # 输出层,10个类别 编译模型: model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) 训练模型: model.fit(train_images, train_labels, epochs=10, batch_size=64) 其中train_images是训练图像的集合,train_labels是相应的类别标签。 最后,使用测试数据对模型进行评估: test_loss, test_acc = model.evaluate(test_images, test_labels) 以上就是一个基本的CNN分类代码。通过构建深层的卷积神经网络,利用不同的卷积核和池化操作,CNN能够自动提取图像的特征,并应用于分类任务中。该模型能够有效地处理图像数据,并取得较好的分类性能。 ### 回答2: CNN(卷积神经网络)是一种在图像识别和处理领域广泛应用的深度学习模型。CNN模型的分类C代码可以涵盖网络结构的定义、数据预处理、模型的训练和推理过程。 首先,我们需要定义CNN网络结构。这可以通过使用诸如Keras或PyTorch等深度学习框架的API来完成。我们可以通过堆叠多个卷积层、池化层和全连接层来定义CNN模型的结构,并使用合适的激活函数和正则化方法来优化模型的性能。 其次,数据预处理是非常重要的一步。我们需要将图像数据转换为模型可接受的格式。这可能包括将图像缩放为固定大小、将像素值归一化到特定范围、进行数据增强等操作。这样可以增强模型的泛化能力,并减少过拟合的风险。 然后,我们可以开始训练模型。我们可以使用反向传播算法来更新模型的参数,以使其能够更好地对训练数据进行分类。我们可以指定损失函数来衡量模型在训练期间的性能,并选择适当的优化算法来最小化损失函数。通过迭代训练过程,模型的准确性将不断提高。 最后,我们可以使用训练好的模型进行推理。通过将新的图像数据输入到模型中,我们可以得到预测的类别标签。这可以通过使用模型的前向传播方法来实现,根据输出的概率分布进行分类决策。 综上所述,CNN分类C代码可以根据具体需求来编写。它包括定义网络结构、数据预处理、模型训练和推理过程。通过调整和优化这些步骤,我们可以训练出强大的CNN模型,用于图像分类和其他相关任务。 ### 回答3: CNN(卷积神经网络)是一种广泛应用于图像识别和计算机视觉领域的机器学习模型。下面是一个示例的CNN分类C语言代码: ```c #include <stdio.h> #include <stdlib.h> // 定义CNN结构体 typedef struct { int numFilters; // 卷积层滤波器的数量 int filterSize; // 卷积层滤波器的尺寸 int imageSize; // 输入图像的尺寸 float** filters; // 卷积层滤波器的权重矩阵 } CNN; // 初始化CNN CNN* initializeCNN(int numFilters, int filterSize, int imageSize) { CNN* cnn = (CNN*)malloc(sizeof(CNN)); cnn->numFilters = numFilters; cnn->filterSize = filterSize; cnn->imageSize = imageSize; // 初始化滤波器权重矩阵 cnn->filters = (float**)malloc(numFilters * sizeof(float*)); for (int i = 0; i < numFilters; i++) { cnn->filters[i] = (float*)malloc(filterSize * filterSize * sizeof(float)); for (int j = 0; j < filterSize * filterSize; j++) { cnn->filters[i][j] = (float)rand() / RAND_MAX; // 随机初始化权重值 } } return cnn; } // CNN分类函数 int classifyCNN(CNN* cnn, float** image) { // 卷积运算 float** result = (float**)calloc(cnn->numFilters, sizeof(float*)); for (int i = 0; i < cnn->numFilters; i++) { result[i] = (float*)calloc(cnn->imageSize - cnn->filterSize + 1, sizeof(float)); for (int j = 0; j < cnn->imageSize - cnn->filterSize + 1; j++) { for (int k = 0; k < cnn->imageSize - cnn->filterSize + 1; k++) { for (int m = 0; m < cnn->filterSize; m++) { for (int n = 0; n < cnn->filterSize; n++) { result[i][j] += image[j + m][k + n] * cnn->filters[i][m * cnn->filterSize + n]; } } } } } // 池化运算 float* pooledResult = (float*)calloc(cnn->numFilters, sizeof(float)); for (int i = 0; i < cnn->numFilters; i++) { pooledResult[i] = result[i][0]; for (int j = 1; j < cnn->imageSize - cnn->filterSize + 1; j++) { if (result[i][j] > pooledResult[i]) { pooledResult[i] = result[i][j]; } } } // 选择最大池化结果作为分类结果 int maxIndex = 0; for (int i = 1; i < cnn->numFilters; i++) { if (pooledResult[i] > pooledResult[maxIndex]) { maxIndex = i; } } return maxIndex; } int main() { int numFilters = 5; int filterSize = 3; int imageSize = 5; // 构造一个3x3的示例图像 float** image = (float**)malloc(imageSize * sizeof(float*)); for (int i = 0; i < imageSize; i++) { image[i] = (float*)malloc(imageSize * sizeof(float)); for (int j = 0; j < imageSize; j++) { image[i][j] = (float)rand() / RAND_MAX; // 随机初始化像素值 } } // 初始化CNN CNN* cnn = initializeCNN(numFilters, filterSize, imageSize); // 分类图像 int classIndex = classifyCNN(cnn, image); // 打印分类结果 printf("The image is classified as class %d.\n", classIndex); // 释放内存 for (int i = 0; i < imageSize; i++) { free(image[i]); } free(image); for (int i = 0; i < numFilters; i++) { free(cnn->filters[i]); } free(cnn->filters); free(cnn); return 0; } ``` 上述代码演示了一个使用CNN对图像进行分类的示例。首先,我们定义了一个CNN结构体,其中包含卷积层的滤波器数量、滤波器尺寸以及输入图像尺寸等参数。接着,我们初始化了CNN并随机初始化了滤波器的权重值。然后,我们通过卷积运算和池化运算得到了每个滤波器的池化结果,并选择最大池化结果作为分类结果。最后,打印出了分类结果并进行了内存释放。 这只是一个简单的CNN分类C代码示例,实际上,CNN还可以进行更深层次的卷积和池化运算,以及更加复杂的网络结构和训练过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值