faster-rcnn的rpn层的shape变换过程

1 假设是一张图片,因此输入的shape = [1,h,w,512]
2 rpn_cls_score 的shape = [1, h,w,18]
然后调用一个自己写的_reshape函数,里面经过了一下维度变换:

  • 经过tf.transpose[0, 3, 1, 2] 后shape = [1, 18 , h , w ]
  • 经过tf.reshpe(1,2,9h , w)后shape = [1,2,9h , w]
  • 再次经过tf.transpose[0,2,3,1]后,shape = [1, 9h,w,2]
    输出的维度 : rpn_cls_score_reshape 的shape [1, 9
    h,w,2]
    #能不能直接通过reshape直接到 [1, 9*h,w,2],

3 调用自己写的_softmax_layer函数:

  • 1.记录自己传入的数据维度
  • 2 经过tf.reshape 后 shape 变为 [9hw , 2 ]
  • 3.使用tf.nn.softmax
  • 4 经过tf.reshape后变为 [1, 9h,w,2]
    输出 rpn_cls_prob_reshape 的shape [1, 9
    h,w,2]

4 调用自己写的_reshape函数将[1, 9*h,w,2]变换为[ 1, h,w 18],过程跟步骤2相同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

城墙郭外斜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值