1 假设是一张图片,因此输入的shape = [1,h,w,512]
2 rpn_cls_score 的shape = [1, h,w,18]
然后调用一个自己写的_reshape函数,里面经过了一下维度变换:
- 经过tf.transpose[0, 3, 1, 2] 后shape = [1, 18 , h , w ]
- 经过tf.reshpe(1,2,9h , w)后shape = [1,2,9h , w]
- 再次经过tf.transpose[0,2,3,1]后,shape = [1, 9h,w,2]
输出的维度 : rpn_cls_score_reshape 的shape [1, 9h,w,2]
#能不能直接通过reshape直接到 [1, 9*h,w,2],
3 调用自己写的_softmax_layer函数:
- 1.记录自己传入的数据维度
- 2 经过tf.reshape 后 shape 变为 [9hw , 2 ]
- 3.使用tf.nn.softmax
- 4 经过tf.reshape后变为 [1, 9h,w,2]
输出 rpn_cls_prob_reshape 的shape [1, 9h,w,2]
4 调用自己写的_reshape函数将[1, 9*h,w,2]变换为[ 1, h,w 18],过程跟步骤2相同