【聚类/回归】k-means 原理和python实现

30 篇文章 9 订阅 ¥15.90 ¥99.00
本文介绍了k-means聚类算法的基本原理,包括距离计算、与k近邻的区别、算法流程。讨论了如何确定合适的k值,如使用肘部法则,并探讨了k-means在处理线性与非线性数据的效果。此外,文章还提供了python实现k-means的参考及初始点选取的优缺点分析。
摘要由CSDN通过智能技术生成

目录

原理 

距离计算

和k近邻的区别:

算法过程

python实现

在线性和非线性数据上的效果

面试问答

如何确定k?

参考资料

sklearn实现


原理 

随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心

k-means是原型聚类,用原型向量刻画聚类结构

距离计算

欧式距离,聚类-原理_坠金的博客-CSDN博客

根据这个原理,kmeans无法区分非线性数据;且若采用的是欧式距离&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坠金

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值