MobileNet学习(二)——Pytorch搭建v2网络

先放上模型结构:
在这里插入图片描述
对于stride=1或2的情况有不同的结构,stride=2时,不采用shortcut:
在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F

class Bottleneck(nn.Module):
    def __init__(self, in_channels, out_channels, multiple, stride):
        super(Bottleneck, self).__init__()
        self.stride = stride
        self.conv1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=in_channels*multiple,
            kernel_size=1,
            stride=1,
            padding=0
        )
        self.bn1 = nn.BatchNorm2d(in_channels*multiple)
        self.conv2 = nn.Conv2d(
            in_channels=in_channels*multiple,
            out_channels=in_channels*multiple,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=in_channels*multiple,
        )
        self.bn2 = nn.BatchNorm2d(in_channels*multiple)
        self.conv3 = nn.Conv2d(
            in_channels=in_channels*multiple
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值