递推关系简介
递推关系(递归关系)是高中数学递推数列部分的推广,属于离散数学的范畴,是用其自身来定义的一个公式。常见的有汉诺塔问题( H n = 2 H n − 1 + 1 H_n=2H_{n-1}+1 Hn=2Hn−1+1)和Fibonacci兔子问题( F n = F n − 1 + F n − 2 F_n=F_{n-1}+F_{n-2} Fn=Fn−1+Fn−2)。
常用性质及公式
-
递推关系解的线性组合还是其解。
-
二阶齐次递推关系,其特征方程对应的三种解的情况:
- λ 1 , λ 2 , ⋯ \lambda_1,\lambda_2,\cdots λ1,λ2,⋯为 2 2 2个不同实根, a n = A 1 λ 1 n + A 2 λ 2 n ; a_n=A_1\lambda_1^n+A_2\lambda_2^n \ ; an=A1λ1n+A2λ2n ;
- λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2为 2 2 2重根,即: λ 1 = λ 2 = λ \lambda_1=\lambda_2=\lambda λ1=λ2=λ,有: a n = ( C 1 + C 2 n ) λ n a_n=(C_1+C_2n)\lambda^n an=(C1+C2n)λn
- λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2为一对共轭复根,即 λ 1 , 2 = ρ e ± i θ \lambda_{1,2}=\rho\mathbb{e}^{\pm i\theta} λ1,2=ρe±iθ,有: a n = ( C 1 c o s n θ + C 2 s i n n θ ) ρ n a_n=(C_1\mathrm{cos}n\theta+C_2\mathrm{sin}n\theta)\rho^n an=(C1cosnθ+C2sinnθ)ρn
-
定理: 非齐次递推关系 ( 1 ) (1) (1)特解形式
a n + c 1 a n − 1 + c 2 a n − 2 + ⋯ + c m a n − m = f n , n ⩾ m ( 1 ) a n + c 1 a n − 1 + c 2 a n − 2 + ⋯ + c m a n − m = 0 , n ⩾ m ( 2 ) \begin{aligned} a_{n}+c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{m} a_{n-m}&=f_{n}, \quad n \geqslant m \qquad (1) \\ a_{n}+c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{m} a_{n-m}&=0, \quad n \geqslant m \qquad\hspace{.5em} (2) \end{aligned} an+c1an−1+c2an−2+⋯+cman−man+c1an−1+c2an−2+⋯+cman−m=fn,n⩾m(1)=0,n⩾m(2)
设非齐次递推关系右端项 f n = λ n p ( n ) f_n=\lambda^np(n) fn=λnp(n), p ( n ) p(n) p(n)是 n n n的多项式,则非齐次递推关系有形如 a n = n k λ n q ( n ) a_n=n^k\lambda^nq(n) an=nkλnq(n)的特解,其中 λ \lambda λ是齐次递推关系特征方程的 k k k重根;如果 λ \lambda λ不是特征方程的根,则取 k = 0 k=0 k=0; q ( n ) q(n) q(n)是与 p ( n ) p(n) p(n)同次数的多项式。
典型例题及应用
- 特殊行列式求值问题(找0元最少的行或列展开)
∣ 1 1 0 0 ⋯ 0 1 1 1 0 ⋯ 0 0 1 1 1 ⋯ 0 ⋮ ⋮ ⋱ ⋱ ⋱ ⋮ 0 0 0 ⋯ 1 1 ∣ n × n \left|\begin{array}{cccc} 1 & 1 & 0 & 0 & \cdots & 0\\ 1 & 1 & 1 & 0 & \cdots & 0\\ 0 & 1 & 1 & 1 & \cdots & 0\\ \vdots & \vdots & \ddots & \ddots & \ddots& \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \end{array}\right| _{n \times n} ∣∣∣∣∣∣∣∣∣∣∣110⋮0111⋮0011⋱0001⋱⋯⋯⋯⋯⋱1000⋮1∣∣∣∣∣∣∣∣∣∣∣n×n
解: 设行列式值为 d n d_n dn。将该行列式按首行展开,再将第二项按首列展开,可得 { d n = d n − 1 − d n − 2 , d 1 = 1 , d 2 = 0 , \left\{ \begin{aligned}d_n&=d_{n-1}-d_{n-2}, \\ d_1&=1, \quad d_2=0, \end{aligned} \right. {dnd1=dn−1−dn−2,=1,d2=0,
于是推得 d 0 = 1 d_0=1 d0=1。特征方程为 x 2 − x + 1 = 0 x^2-x+1=0 x2−x+1=0, ⇒ \Rightarrow ⇒ x = 1 ± 3 i 2 = e ± π 3 i . x=\frac{1\pm \sqrt{3}\mathrm{i}}{2}=\mathrm{e}^{\pm \frac\pi3\mathrm{i}}. x=21±3i=e±3πi.
∴ d n = C 1 c o s n π 3 + C 2 s i n n π 3 , \therefore d_n = C_1\mathrm{cos}\frac{n\pi}{3}+C_2\mathrm{sin}\frac{n\pi}{3}, ∴dn=C1cos3nπ+C2sin3nπ,
代入初值得: { C 1 = 1 , C 2 = 3 3 , \left\{ \begin{aligned}C_1&=1, \\ C_2&=\frac{\sqrt{3}}3, \end{aligned} \right. ⎩⎪⎨⎪⎧C1C2=1,=33,
∴ d n = c o s n π 3 + 3 3 s i n n π 3 . \therefore d_n=\mathrm{cos}\frac{n\pi}{3}+\frac{\sqrt{3}}{3}\mathrm{sin}\frac{n\pi}{3}. ∴dn=cos3nπ+33sin3nπ. - 设
a
n
a_n
an表示从格点
(
0
,
0
)
(0, 0)
(0,0)开始的长度为
n
n
n步的路径数,每步只允许下列三种走法之一:
{ L : ( x , y ) ↦ ( x − 1 , y ) , R : ( x , y ) ↦ ( x + 1 , y ) , U : ( x , y ) ↦ ( x , y + 1 ) , \left\{ \begin{aligned} L:& \ (x,y)\mapsto(x-1,y), \\ R:& \ (x,y)\mapsto(x+1,y), \\ U:& \ (x,y)\mapsto(x,y+1), \end{aligned} \right. ⎩⎪⎨⎪⎧L:R:U: (x,y)↦(x−1,y), (x,y)↦(x+1,y), (x,y)↦(x,y+1),
且不允许出现 L R LR LR 和 R L RL RL 这两种走法。试求序列 { a n } n ⩾ 0 \{a_n\}_{n\geqslant0} {an}n⩾0 的表达式 a n a_n an。
解:
分析题目,若第一步走 U U U,则后面可选择的走法无限制,即有 a n − 1 a_{n-1} an−1种走法;若第一步走 L ( R ) L(R) L(R),则后面只能选择走 L ( R ) L(R) L(R)或者 U U U,走 U U U时,无限制,为 2 a n − 2 2a_{n-2} 2an−2,而走 L ( R ) L(R) L(R)时,后面仍可选择走 L ( R ) L(R) L(R)或者 U U U,…直到走完第 n n n步(为方便理解,可参看下图(1)。以此类推,可得 a n a_n an的递推关系式为 { a n = a n − 1 + 2 ∑ k = 2 n a n − k a 1 = 3 , a 2 = 7 \left\{ \begin{aligned}a_n&=a_{n-1}+2\sum_{k=2}^{n}a_{n-k} \\ a_1&=3, \ a_2=7 \end{aligned} \right. ⎩⎪⎪⎨⎪⎪⎧ana1=an−1+2k=2∑nan−k=3, a2=7
但是这个递推式不易求解,为此可先变换形式为: a n = a n − 1 + 2 ∑ k = 0 n − 2 a k = ∑ k = 0 n − 1 a k + ∑ k = 0 n − 2 a k (1) a_n=a_{n-1}+2\sum_{k=0}^{n-2}a_{k}=\sum_{k=0}^{n-1}a_{k}+\sum_{k=0}^{n-2}a_{k}\tag{1} an=an−1+2k=0∑n−2ak=k=0∑n−1ak+k=0∑n−2ak(1)
由此得:
a n − 1 = ∑ k = 0 n − 2 a k + ∑ k = 0 n − 3 a k (2) a_{n-1}=\sum_{k=0}^{n-2}a_{k}+\sum_{k=0}^{n-3}a_{k}\tag{2} an−1=k=0∑n−2ak+k=0∑n−3ak(2)
( 1 ) − ( 2 ) (1)-(2) (1)−(2)得: a n = 2 a n − 1 + a n − 2 a_n=2a_{n-1}+a_{n-2} an=2an−1+an−2求解特征方程 x 2 − 2 x − 1 = 0 x^2-2x-1=0 x2−2x−1=0,得 x = 1 ± 2 x=1\pm \sqrt2 x=1±2,由 a 1 = 3 , a 2 = 7 a_1=3,a_2=7 a1=3,a2=7可得 a 0 = 1 a_0=1 a0=1, ∴ a n = ( 1 + 2 ) n + 1 + ( 1 − 2 ) n + 1 2 \therefore a_n=\frac{(1+\sqrt2)^{n+1}+{(1-\sqrt2)}^{n+1}}{2} ∴an=2(1+2)n+1+(1−2)n+1.
小结
递推关系常见题型的难点在于找到递推的特点然后构造递推关系,解法方面可直接求解特征方程,并根据解的特点带公式出答案。