常用离散、连续分布及期望、方差总结

预备定义

数学期望

定义

E [ g ( x ) ] = { ∑ i g ( x i ) p ( x i ) , 离散场合 ∫ − ∞ ∞ g ( x ) p ( x ) d x , 连续场合 E[g(x)]=\begin{cases}\sum\limits_ig(x_i)p(x_i),&\text{离散场合} \\ \\ \int_{-\infty}^\infty{g(x)p(x)\mathrm{d}x},&\text{连续场合}\end{cases} E[g(x)]= ig(xi)p(xi),g(x)p(x)dx,离散场合连续场合

性质

  1. 常数期望为其自身;
  2. E ( a X + b ) = a E ( X ) + b E(aX+b)=aE(X)+b E(aX+b)=aE(X)+b;
  3. 多维随机变量亦满足线性性质;
  4. 级数(积分)收敛,则期望存在;反之不存在,如Cauchy分布。

方差

定义

方差: D ( X ) = E [ X − E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E[X-E(X)]^2=E(X^2)-[E(X)]^2 D(X)=E[XE(X)]2=E(X2)[E(X)]2,

标准差: D X \sqrt{DX} DX ,

标准化的随机变量: X − E X D X \frac{X-EX}{\sqrt{DX}} DX XEX.

性质

  1. 常数方差为零;
  2. D ( a X + b ) = a 2 D ( X ) D(aX+b)=a^2D(X) D(aX+b)=a2D(X)
  3. 极值性质:若 c ≠ E ( X ) c\neq E(X) c=E(X), 则 D ( X ) = E [ X − E ( X ) 2 ] = E ( X − c ) 2 − ( c − E X ) 2 < E ( X − c ) 2 ; D(X)=E[X-E(X)^2]=E(X-c)^2-(c-EX)^2<E(X-c)^2; D(X)=E[XE(X)2]=E(Xc)2(cEX)2<E(Xc)2;
  4. 切比雪夫不等式(描述随机变量的变化情况): P { ∣ X − E X ∣ ⩾ ε } ⩽ D X ε 2 P\{|X-EX|\geqslant\varepsilon\}\leqslant\frac{DX}{\varepsilon^2} P{XEXε}ε2DX,或表示为 P { ∣ X − E X ∣ < ε } ⩾ 1 − D X ε 2 P\{|X-EX|<\varepsilon\}\geqslant1-\frac{DX}{\varepsilon^2} P{XEX<ε}1ε2DX.

协方差&相关系数

协方差
  • c o v ( X ,   Y ) = E [ ( X − E X ) ( Y − E Y ) ] = E ( X Y ) − E X ⋅ E Y \mathrm{cov}(X, \ Y) = E[(X-EX)(Y-EY)]=E(XY)-EX\cdot EY cov(X, Y)=E[(XEX)(YEY)]=E(XY)EXEY.

  • D ( X + Y ) = D ( X ) + D ( Y ) + 2 c o v ( X ,   Y ) D(X+Y)=D(X)+D(Y)+2\mathrm{cov}(X,\ Y) D(X+Y)=D(X)+D(Y)+2cov(X, Y).

相关系数
  • r i j = c o v ( X ,   Y ) D X ⋅ D Y r_{ij}=\frac{\mathrm{cov}(X,\ Y)}{\sqrt{DX}\cdot \sqrt{DY}} rij=DX DY cov(X, Y),

  • 显然,相关系数也是标准化的两随机变量 X − E X D X \frac{X-EX}{\sqrt{DX}} DX XEX Y − E Y D Y \frac{Y-EY}{\sqrt{DY}} DY YEY的协方差;

  • 定义常数与任何随机变量的相关系数为 0 0 0.

性质
  1. ∣ r ∣ ⩽ 1 |r|\leqslant1 r1;
  2. r = 0 r=0 r=0,不相关;
  3. 以下四个条件等价:
  • c o v ( X ,   Y ) = 0 \mathrm{cov}(X,\ Y)=0 cov(X, Y)=0;
  • X X X Y Y Y不相关;
  • E ( X Y ) = E X ⋅ E Y E(XY)=EX\cdot EY E(XY)=EXEY;
  • D ( X + Y ) = D X + D Y D(X+Y)=DX+DY D(X+Y)=DX+DY.
  1. X X X Y Y Y独立,则 X X X Y Y Y不相关,反之不成立;
  2. 二元正态分布的不相关性与独立性等价。

离散分布期望、方差

分布名称密度函数 p ( x ) p(x) p(x)数学期望 E ( X ) E(X) E(X)方差 D ( X ) D(X) D(X)
退化分布(单点分布) p c = 1 p_c=1 pc=1 c c c 0 0 0
伯努利分布(两点分布) p k = p k ( 1 − p ) 1 − k ,   k = 0 ,   1 p_k=p^{k}(1-p)^{1-k},\ k=0,\ 1 pk=pk(1p)1k, k=0, 1 p p p p ( 1 − p ) p(1-p) p(1p)
二项分布 b ( k ;   n ,   p ) = ( n k ) p k ( 1 − p ) n − k b(k;\ n,\ p)=\binom{n}{k}p^k(1-p)^{n-k} b(k; n, p)=(kn)pk(1p)nk n p np np n p ( 1 − p ) np(1-p) np(1p)
泊松分布 p ( k ;   λ ) = λ k k ! e − λ p(k;\ \lambda)=\frac{\lambda^k}{k!}\mathrm{e}^{-\lambda} p(k; λ)=k!λkeλ λ \lambda λ λ \lambda λ
几何分布 g ( k ;   p ) = ( 1 − p ) k − 1 p g(k;\ p)=(1-p)^{k-1}p g(k; p)=(1p)k1p 1 / p 1/p 1/p ( 1 − p ) / p 2 (1-p)/p^2 (1p)/p2
超几何分布 p k = ( M k ) ( N − M n − k ) ( N n ) p_k=\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}} pk=(nN)(kM)(nkNM) n M N \frac{nM}{N} NnM n M N ( 1 − M N ) ⋅ N − n N − 1 \frac{nM}{N}\left(1-\frac MN\right)\cdot \frac{N-n}{N-1} NnM(1NM)N1Nn
帕斯卡分布 p k = ( k − 1 r − 1 ) p r ( 1 − p ) k − r ,   k = r , r + 1 , ⋯ p_k=\binom{k-1}{r-1}p^r(1-p)^{k-r},\ k=r,r+1,\cdots pk=(r1k1)pr(1p)kr, k=r,r+1, r p \frac rp pr r ( 1 − p ) p 2 \frac{r(1-p)}{p^2} p2r(1p)
负二项分布 p k = ( − r k ) p r ( p − 1 ) k ,   k = 0 , 1 , 2 , ⋯ p_k=\binom{-r}{k}p^r(p-1)^k,\ k=0,1,2,\cdots pk=(kr)pr(p1)k, k=0,1,2, r ( 1 − p ) p \frac {r(1-p)}p pr(1p) r ( 1 − p ) p 2 \frac{r(1-p)}{p^2} p2r(1p)

连续分布期望、方差

分布名称密度函数 p ( x ) p(x) p(x)数学期望 E ( X ) E(X) E(X)方差 D ( X ) D(X) D(X)
均匀分布 p ( x ) = { 1 b − a , a ⩽ x ⩽ b 0 , 其他 p(x)=\begin{cases}\dfrac1{b-a},&a\leqslant x \leqslant b\\0,&\text{其他}\end{cases} p(x)= ba1,0,axb其他 a + b 2 \frac{a+b}2 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2
正态分布(Gauss分布) p ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 p(x)=\dfrac{1}{\sqrt{2\pi\sigma^2}}\mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} p(x)=2πσ2 1e2σ2(xμ)2 μ \mu μ σ 2 \sigma^2 σ2
指数分布 p ( x ) = { λ e − λ x , x ⩾ 0 0 , x < 0 p(x)=\begin{cases}\lambda\mathrm{e}^{-\lambda x},& x \geqslant 0\\0,&x<0\end{cases} p(x)={λeλx,0,x0x<0 1 λ \frac1\lambda λ1 1 λ 2 \frac1{\lambda^2} λ21
伽玛分布( Γ \Gamma Γ分布) p ( x ) = { λ r Γ ( r ) x r − 1 e − λ x , x ⩾ 0 0 , x < 0 p(x)=\begin{cases}\dfrac{\lambda^r}{\Gamma{(r)}}x^{r-1}\mathrm{e}^{-\lambda x},& x \geqslant 0\\0,&x<0\end{cases} p(x)= Γ(r)λrxr1eλx,0,x0x<0 r λ \frac r\lambda λr r λ 2 \frac{r}{\lambda^2} λ2r
卡方分布( χ 2 \chi^2 χ2分布) p ( x ) = { 1 2 n / 2 Γ ( n 2 ) x n 2 − 1 e − x 2 , x ⩾ 0 0 , x < 0 p(x)=\begin{cases}\dfrac{1}{2^{n/2}\Gamma{(\frac n2)}}x^{\frac n2-1}\mathrm{e}^{-\frac x 2},& x \geqslant 0\\0,&x<0\end{cases} p(x)= 2n/2Γ(2n)1x2n1e2x,0,x0x<0 n n n 2 n 2n 2n
柯西分布 p ( x ) = 1 π ⋅ λ λ 2 + ( x − μ ) 2 p(x)=\dfrac1\pi\cdot\dfrac{\lambda}{\lambda^2+(x-\mu)^2} p(x)=π1λ2+(xμ)2λ不存在不存在
t t t分布 p ( x ) = Γ ( n + 1 2 ) n π Γ ( n 2 ) ( 1 + x 2 n ) − n + 1 2 p(x)=\dfrac{\Gamma\left(\frac {n+1}2\right)}{\sqrt{n\pi}\Gamma\left(\frac n2\right)}\left(1+\dfrac{x^2}{n}\right)^{-\frac{n+1}{2}} p(x)= Γ(2n)Γ(2n+1)(1+nx2)2n+1 0   ( n > 1 ) 0\ (n>1) 0 (n>1) n n − 2   ( n > 2 ) \frac n{n-2}\ (n>2) n2n (n>2)
Gumbel分布是极值分布之一,通常用于描述最大值或最小值的分布情况。假设$X$是一个连续型随机变量,其概率密度函数为: $$f(x)=\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}$$ 其中,$\mu$为位置参数,$\beta$为尺度参数。 该分布分布函数为: $$F(x)=e^{-e^{-(x-\mu)/\beta}}$$ 期望方差分别为: $$E(X)=\mu+\gamma\beta,$$ $$Var(X)=\frac{\pi^2}{6}\beta^2,$$ 其中,$\gamma$为欧拉常数,$\gamma\approx0.5772$。 推导过程如下: 首先,我们需要求出该分布分布函数。对于任意一个实数$x$,有: $$F(x)=P(X\leq x)=\int_{-\infty}^x f(t)dt$$ 将概率密度函数代入得: $$F(x)=\int_{-\infty}^x \frac{1}{\beta}e^{-(t-\mu)/\beta}e^{-e^{-(t-\mu)/\beta}}dt$$ 令$y=e^{-(t-\mu)/\beta}$,则$t=\mu-\beta\ln y$,$dt=-\frac{\beta}{y}dy$,代入得: $$F(x)=\int_0^{e^{-(x-\mu)/\beta}}\frac{1}{\beta}e^{-\ln y}dy=\int_0^{e^{-(x-\mu)/\beta}}y^{-1}dy=\left.-\ln y\right|_0^{e^{-(x-\mu)/\beta}}=e^{-e^{-(x-\mu)/\beta}}$$ 因此,该分布分布函数为$F(x)=e^{-e^{-(x-\mu)/\beta}}$。 接下来,我们求期望方差。首先,计算期望: $$E(X)=\int_{-\infty}^\infty x f(x)dx=\int_{-\infty}^\infty x\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}dx$$ 令$y=e^{-(x-\mu)/\beta}$,则$x=\mu-\beta\ln y$,$dx=-\frac{\beta}{y}dy$,代入得: $$E(X)=\int_0^\infty (\mu-\beta\ln y)\frac{1}{\beta}e^{-\ln y}dy=\mu-\int_0^\infty y^{-1}\ln y dy$$ 对于$\int_0^\infty y^{-1}\ln y dy$,我们可以采用分部积分法。设$u=\ln y$,$dv=y^{-1}dy$,则$du=y^{-1}dy$,$v=\ln y$,代入得: $$\int_0^\infty y^{-1}\ln y dy=\left.y\ln y\right|_0^\infty-\int_0^\infty 1dy=0+1=1$$ 因此,$E(X)=\mu-\gamma\beta$。 接下来,计算方差: $$Var(X)=E(X^2)-[E(X)]^2=\int_{-\infty}^\infty x^2 f(x)dx-(\mu-\gamma\beta)^2$$ 将概率密度函数代入得: $$Var(X)=\int_{-\infty}^\infty x^2\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}dx-(\mu-\gamma\beta)^2$$ 令$y=e^{-(x-\mu)/\beta}$,则$x=\mu-\beta\ln y$,$dx=-\frac{\beta}{y}dy$,代入得: $$Var(X)=\int_0^\infty (\mu-\beta\ln y)^2\frac{1}{\beta}e^{-\ln y}dy-(\mu-\gamma\beta)^2$$ 展开得: $$Var(X)=\int_0^\infty \frac{\mu^2}{\beta}y^{-1}e^{-\ln y}dy-2\mu\int_0^\infty y^{-1}\ln y e^{-\ln y}dy+\beta^2\int_0^\infty y^{-1}(\ln y)^2 e^{-\ln y}dy-(\mu-\gamma\beta)^2$$ 对于$\int_0^\infty y^{-1}(\ln y)^2 e^{-\ln y}dy$,我们可以采用分部积分法。设$u=(\ln y)^2$,$dv=y^{-1}e^{-\ln y}dy$,则$du=2\ln y\frac{1}{y}dy$,$v=-e^{-\ln y}=-y^{-1}$,代入得: $$\int_0^\infty y^{-1}(\ln y)^2 e^{-\ln y}dy=\left.-(\ln y)^2y^{-1}e^{-\ln y}\right|_0^\infty+2\int_0^\infty y^{-2}e^{-\ln y}dy=2\int_0^\infty e^{-x}dx=2$$ 因此,$Var(X)=\frac{\pi^2}{6}\beta^2$。 综上所述,Gumbel分布的密度函数为$f(x)=\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}$,分布函数为$F(x)=e^{-e^{-(x-\mu)/\beta}}$,期望为$E(X)=\mu-\gamma\beta$,方差为$Var(X)=\frac{\pi^2}{6}\beta^2$。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值