Fourier变换、Laplace变换与广义函数总结

写在前面

总结一下傅里叶变换和拉普拉斯变换的一些常用性质和简单应用,以及广义函数的一些性质与应用,方便复习。本文主要参考姜礼尚老师所著的《数学物理方程讲义(第三版)》及王元明老师所著的《数学物理方程与特殊函数(第四版)》。

一些定义、性质引入

三角函数系的正交性

  • 三角函数系(三角函数列):

{ 1 ,   cos ⁡ x ,   sin ⁡ x ,   cos ⁡ 2 x ,   sin ⁡ 2 x ,   ⋯   ,   cos ⁡ n x ,   sin ⁡ n x ,   ⋯   } \{1,\ \cos x,\ \sin x,\ \cos 2x,\ \sin2x,\ \cdots,\ \cos nx,\ \sin nx,\ \cdots\} {1, cosx, sinx, cos2x, sin2x, , cosnx, sinnx, }

其中所有函数具有共同的周期 2 π 2\pi 2π.

  • 正交性质:在三角函数系中任何两个不相同的函数的乘积在 [ − π ,   π ] [-\pi,\ \pi] [π, π]上的积分都为0,而其中任何一个函数的平方在 [ − π ,   π ] [-\pi,\ \pi] [π, π]上的积分都不为0.

定理

若对 ∀ x ∈ R \forall x\in \mathbb{R} xR,有
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) , (1) f(x)=\frac{a_0}2+\sum\limits_{n=1}^\infty(a_n\cos nx+b_n\sin nx),\tag{1} f(x)=2a0+n=1(ancosnx+bnsinnx),(1)
且上式右端级数一致收敛,则有:
a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x , n = 0 ,   1 ,   2 ,   ⋯   , b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x , n = 1 ,   2 ,   3 ,   ⋯   . (2) \begin{aligned} a_n&=\frac1\pi\int_{-\pi}^\pi f(x)\cos nx \mathrm{d}x,\quad n=0,\ 1,\ 2,\ \cdots,\\ b_n&=\frac1\pi\int_{-\pi}^\pi f(x)\sin nx \mathrm{d}x,\quad n=1,\ 2,\ 3,\ \cdots.\\ \end{aligned}\tag{2} anbn=π1ππf(x)cosnxdx,n=0, 1, 2, ,=π1ππf(x)sinnxdx,n=1, 2, 3, .(2)

证明思路

根据收敛性假设和 ( 1 ) (1) (1)的一致收敛性,可以对 ( 1 ) (1) (1)两边对 x x x − π -\pi π π \pi π积分,右端得到只含有 a 0 a_0 a0的项(由于正交性质); 再对 ( 1 ) (1) (1)两端同乘以 cos ⁡ n x \cos nx cosnx并积分,得到 a n a_n an表达式; 对 ( 1 ) (1) (1)两端同乘以 sin ⁡ n x \sin nx sinnx并积分,得到 b n b_n bn表达式。

傅里叶级数(针对有限区间)

( 2 ) (2) (2)式所确定的系数 a n ,   b n a_n,\ b_n an, bn称为 f ( x ) f(x) f(x)傅里叶系数,将傅里叶系数代入 ( 1 ) (1) (1)右端的三角级数,即得到傅里叶级数,记作
f ( x )   ∼   a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) . (3) f(x) \ \sim\ \frac{a_0}2+\sum\limits_{n=1}^\infty(a_n\cos nx+b_n\sin nx).\tag{3} f(x)  2a0+n=1(ancosnx+bnsinnx).(3)

推广至有限区间(常用)

作变量替换 t = π l x t=\frac\pi lx t=lπx,并令 g ( t ) = f ( l π t ) g(t)=f(\frac l\pi t) g(t)=f(πlt),设其傅里叶级数为
g ( t )   ∼   a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n t + b n sin ⁡ n t ) , g(t) \ \sim\ \frac{a_0}2+\sum\limits_{n=1}^\infty(a_n\cos nt+b_n\sin nt), g(t)  2a0+n=1(ancosnt+bnsinnt),

其中
a n = 1 π ∫ − π π g ( t ) cos ⁡ n t d t = 1 l ∫ − l l f ( x ) cos ⁡ n π l x d x , n = 0 ,   1 ,   2 ,   ⋯   , b n = 1 π ∫ − π π g ( t ) sin ⁡ n t d t = 1 l ∫ − l l f ( x ) sin ⁡ n π l x d x , n = 1 ,   2 ,   3 ,   ⋯   , \begin{aligned} a_n&=\frac1\pi\int_{-\pi}^\pi g(t)\cos nt \mathrm{d}t=\frac1l\int_{-l}^lf(x)\cos \frac{n\pi}lx\mathrm{d}x,\quad n=0,\ 1,\ 2,\ \cdots,\\ b_n&=\frac1\pi\int_{-\pi}^\pi g(t)\sin nt \mathrm{d}t=\frac1l\int_{-l}^lf(x)\sin \frac{n\pi}lx\mathrm{d}x,\quad n=1,\ 2,\ 3,\ \cdots,\\ \end{aligned} anbn=π1ππg(t)cosntdt=l1llf(x)coslnπxdx,n=0, 1, 2, ,=π1ππg(t)sinntdt=l1llf(x)sinlnπxdx,n=1, 2, 3, ,
还原自变量为 x x x,得到
f ( x )   ∼   a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π l x + b n sin ⁡ n π l x ) , (4) f(x)\ \sim\ \frac{a_0}2+\sum\limits_{n=1}^\infty(a_n\cos \frac{n\pi}{l}x+b_n\sin \frac{n\pi}{l}x),\tag{4} f(x)  2a0+n=1(ancoslnπx+bnsinlnπx),(4)
其中
a n = 1 l ∫ − l l f ( x ) cos ⁡ n π l x d x , n = 0 ,   1 ,   2 ,   ⋯   , b n = 1 l ∫ − l l f ( x ) sin ⁡ n π l x d x , n = 1 ,   2 ,   3 ,   ⋯   . (5) \begin{aligned} a_n&=\frac1l\int_{-l}^lf(x)\cos \frac{n\pi}lx\mathrm{d}x,\quad n=0,\ 1,\ 2,\ \cdots,\\ b_n&=\frac1l\int_{-l}^lf(x)\sin \frac{n\pi}lx\mathrm{d}x,\quad n=1,\ 2,\ 3,\ \cdots.\\ \end{aligned}\tag{5} anbn=l1llf(x)coslnπxdx,n=0, 1, 2, ,=l1llf(x)sinlnπxdx,n=1, 2, 3, .(5)

推广为正弦级数或余弦级数

采用奇延拓(正弦级数)或偶延拓(余弦级数)的方法即得,不再赘述。

傅里叶积分公式(针对无限区间)

定理

设函数 f ( x ) f(x) f(x)是定义在 ( − ∞ ,   + ∞ ) (-\infty,\ +\infty) (, +)内的实函数,其在任一有限区间 [ − l ,   l ] [-l,\ l] [l, l]上分段光滑(一阶导数存在且导函数只有第一类间断点),且在 ( − ∞ ,   + ∞ ) (-\infty,\ +\infty) (, +)上绝对可积,即 ∫ − ∞ + ∞ ∣ f ( t ) ∣ d t \int_{-\infty}^{+\infty}|f(t)|\mathrm{d}t +f(t)dt收敛,则有
f ( x ) = 1 π ∫ 0 + ∞ d ω ∫ − ∞ + ∞ f ( t ) cos ⁡ ω ( x − t ) d t , − ∞ < x < + ∞ , (6) f(x)=\frac1\pi\int_0^{+\infty}\mathrm{d}\omega\int_{-\infty}^{+\infty}f(t)\cos\omega(x-t)\mathrm{d}t,\quad -\infty<x<+\infty,\tag{6} f(x)=π10+dω+f(t)cosω(xt)dt,<x<+,(6)
上式称为函数 f ( x ) f(x) f(x)的傅里叶积分公式。

( 6 ) (6) (6)式右端展开,可得
f ( x ) = ∫ 0 + ∞ [ a ( ω ) cos ⁡ ω x + b ( ω ) sin ⁡ ω x ] d ω , (7) f(x)=\int_{0}^{+\infty}\left[a(\omega)\cos \omega x+b(\omega)\sin \omega x\right]\mathrm{d}\omega,\tag{7} f(x)=0+[a(ω)cosωx+b(ω)sinωx]dω,(7)

其中
a ( ω ) = 1 π ∫ − ∞ + ∞ f ( t ) cos ⁡ ω t   d t , b ( ω ) = 1 π ∫ − ∞ + ∞ f ( t ) sin ⁡ ω t   d t . (8) \begin{aligned}a(\omega)&=\frac1\pi\int_{-\infty}^{+\infty}f(t)\cos \omega t\ \mathrm{d}t,\\b(\omega)&=\frac1\pi\int_{-\infty}^{+\infty}f(t)\sin \omega t\ \mathrm{d}t.\end{aligned}\tag{8} a(ω)b(ω)=π1+f(t)cosωt dt,=π1+f(t)sinωt dt.(8)

证明思路

直接对有限区间 [ − l ,   l ] [-l,\ l] [l, l]推广式的积分上下限取极限,针对离散点取极限即得。

傅里叶变换

利用Euler公式
e ω ( x − t ) i = cos ⁡ ω ( x − t ) + i sin ⁡ ω ( x − t ) , \mathrm{e}^{\omega(x-t)\mathrm{i}}=\cos \omega(x-t)+\mathrm{i}\sin\omega(x-t), eω(xt)i=cosω(xt)+isinω(xt),
( 6 ) (6) (6)写成复数形式,并利用积分中值定理及奇函数的性质(对称区间积分为0),得到
f ( x ) = 1 2 π ∫ − ∞ + ∞ e i ω x d ω ∫ − ∞ + ∞ f ( t ) e − i ω t d t , (9) f(x)=\frac1{2\pi}\int_{-\infty}^{+\infty}\mathrm{e}^{\mathrm{i}\omega x}\mathrm{d}\omega\int_{-\infty}^{+\infty}f(t)\mathrm{e}^{-\mathrm{i}\omega t}\mathrm{d}t \tag{9}, f(x)=2π1+eiωxdω+f(t)eiωtdt,(9)
在上式中,令
F ( ω ) = ∫ − ∞ + ∞ f ( t ) e − i ω t d t , (10) F(\omega)=\int_{-\infty}^{+\infty}f(t)\mathrm{e}^{-\mathrm{i}\omega t}\mathrm{d}t,\tag{10} F(ω)=+f(t)eiωtdt,(10)
上式即为傅里叶变换公式, 并由此得到傅里叶逆变换式
f ( x ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i ω x d ω , (11) f(x)=\frac1{2\pi}\int_{-\infty}^{+\infty}F(\omega)\mathrm{e}^{\mathrm{i}\omega x}\mathrm{d}\omega, \tag{11} f(x)=2π1+F(ω)eiωxdω,(11)
F ( ω ) F(\omega) F(ω) f ( x ) f(x) f(x)的傅里叶变换(或称为 f ( x ) f(x) f(x)的象函数),记为
F ( ω ) = F [ f ( x ) ] , F(\omega)=\mathscr{F}[f(x)], F(ω)=F[f(x)],
并称 ( 11 ) (11) (11) F ( ω ) F(\omega) F(ω)的傅里叶逆变换(或称 f ( x ) f(x) f(x) F ( ω ) F(\omega) F(ω)的象原函数),记为
f ( x ) = F − 1 [ F ( ω ) ] . f(x)=\mathscr{F}^{-1}[F(\omega)]. f(x)=F1[F(ω)].

卷积

f ( x ) ,   g ( x ) ∈ L ( − ∞ ,   + ∞ ) f(x),\ g(x)\in L(-\infty,\ +\infty) f(x), g(x)L(, +),则
f ∗ g ( x ) = ∫ − ∞ + ∞ f ( x − t ) g ( t ) d t ∈ L ( − ∞ ,   + ∞ ) . f\ast g(x)=\int_{-\infty}^{+\infty}f(x-t)g(t)\mathrm{d}t\in L(-\infty,\ +\infty). fg(x)=+f(xt)g(t)dtL(, +).

傅里叶(Fourier)变换及其逆变换

傅里叶变换,由法国著名数学家Fourier针对温度分布问题提出,之后在信号处理等领域也有着重要的作用。

定义式

上面已经进行了推导,在此直接列出
F ( ω ) = ∫ − ∞ + ∞ f ( x ) e − i ω x d x , f ( x ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i ω x d ω . \begin{aligned} F(\omega)&=\int_{-\infty}^{+\infty}f(x)\mathrm{e}^{-\mathrm{i}\omega x}\mathrm{d}x,\\\\ f(x)&=\frac1{2\pi}\int_{-\infty}^{+\infty}F(\omega)\mathrm{e}^{\mathrm{i}\omega x}\mathrm{d}\omega. \end{aligned} F(ω)f(x)=+f(x)eiωxdx,=2π1+F(ω)eiωxdω.
函数 f ( x ) f(x) f(x)的傅里叶变换也可记为 f ^ \hat{f} f^. 相应地,其逆变换记为 ( f ^ ) ∨ (\hat{f})^{\vee} (f^),显然有 ( f ^ ) ∨ = f (\hat{f})^{\lor}=f (f^)=f.

常用性质

下述各函数均假定在 L ( − ∞ ,   ∞ ) L(-\infty,\ \infty) L(, )区间内,即Lebesgue可积。

  1. 线性性质: 若 a i ∈ C   ( i = 1 ,   2 ) a_i\in \mathbb{C}\,(i=1,\ 2) aiC(i=1, 2),有 ( a 1 f 1 + a 2 f 2 ) ∧ = a 1 f 1 ^ + a 2 f 2 ^ (a_1f_1+a_2f_2)^\wedge=a_1\hat{f_1}+a_2\hat{f_2} (a1f1+a2f2)=a1f1^+a2f2^;
  2. ★ \bigstar 微商性质: ( d f d x ) ∧ = i ω f ^ \left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)^{\land}=\mathrm{i}\omega\hat{f} (dxdf)=iωf^, 更一般地,有 ( d m f d x m ) ∧ = ( i ω ) m f ^ ( ω ) ,   m ⩾ 1 \left(\frac{\mathrm{d^m}f}{\mathrm{d}x^m}\right)^{\land}=(\mathrm{i}\omega)^m\hat{f}(\omega), \ m\geqslant1 (dxmdmf)=(iω)mf^(ω), m1;
  3. ★ \bigstar 乘多项式: ( x f ( x ) ) ∧ = i d d λ f ^ ( λ ) (xf(x))^\land=\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}\lambda}\hat{f}(\lambda) (xf(x))=idλdf^(λ), 更一般地,有 ( x m f ( x ) ) ∧ = i m d m d ω m f ^ ( ω ) ,   m ⩾ 1 (x^mf(x))^\land=\mathrm{i}^m\frac{\mathrm{d}^m}{\mathrm{d}\omega^m}\hat{f}(\omega),\ m\geqslant1 (xmf(x))=imdωmdmf^(ω), m1;
  4. 积分性质: [ ∫ − ∞ t f ( τ ) d τ ] ∧ = f ^ ( i ω ) i ω + π f ^ ( 0 ) δ ( ω ) \left[\int_{-\infty}^{t}f(\tau)\mathrm{d}\tau\right]^\land=\frac{\hat{f}(\mathrm{i}\omega)}{\mathrm{i}\omega}+\pi\hat{f}(0)\delta(\omega) [tf(τ)dτ]=iωf^(iω)+πf^(0)δ(ω);
  5. ★ \bigstar 卷积性质: ( f ∗ g ) ∧ = f ^ ⋅ g ^ (f\ast g)^\land=\hat{f}\cdot \hat{g} (fg)=f^g^, 或 f ∗ g = ( f ^ ⋅ g ^ ) ∨ f\ast g=(\hat{f}\cdot\hat{g})^{\lor} fg=(f^g^);
  6. 平移性质: [ f ( x − a ) ] ∧ ( ω ) = e − i ω a f ^ ( ω ) [f(x-a)]^\land(\omega)=\mathrm{e}^{-\mathrm{i}\omega a}\hat{f}(\omega) [f(xa)](ω)=eiωaf^(ω);
  7. 伸缩性质: [ f ( k x ) ] ∧ ( ω ) = 1 ∣ k ∣ f ^ ( ω k ) ,   k ≠ 0 [f(kx)]\wedge(\omega)=\frac1{|k|}\hat{f}\left(\frac\omega k\right),\ k\neq0 [f(kx)](ω)=k1f^(kω), k=0;
  8. 对称性质: [ f ( x ) ] ∨ ( ω ) = f ^ ( − ω ) = [ f ( − x ) ] ∧ ( ω ) [f(x)]\lor(\omega)=\hat{f}(-\omega)=[f(-x)]^{\land}(\omega) [f(x)](ω)=f^(ω)=[f(x)](ω).

广义函数 δ ( x ) \delta(x) δ(x)

引入

Dirac函数,即 δ \delta δ函数是最常用的广义函数,用于描述集中分布的量,并具有如下性质
δ ( x ) = { 0 , 当 x ≠ 0 时 , ∞ , 当 x = 0 时 , \delta(x)=\begin{cases}0,&\text{当}x\neq0\text{时},\\\infty,&\text{当}x=0\text{时},\end{cases} δ(x)={0,,x=0,x=0,

∫ − ∞ + ∞ δ ( x )   d x = 1. \int_{-\infty}^{+\infty}\delta(x)\,\mathrm{d}x=1. +δ(x)dx=1.

对偶积

φ ∈ D ( R ) \varphi\in\mathscr{D}(\mathbb{R}) φD(R)是一个试验函数,用 ⟨ f ,   φ ⟩ \lang f,\ \varphi\rang f, φ表示它所对应的数值,称为对偶积。对偶积满足线性性和连续性,并且
⟨ f ,   φ ⟩ = ∫ − ∞ + ∞ f ( x ) φ ( x )   d x , \lang f,\ \varphi\rang=\int_{-\infty}^{+\infty}f(x)\varphi(x)\,\mathrm{d}x, f, φ=+f(x)φ(x)dx,

性质

  1. ⟨ δ ,   φ ⟩ = ∫ − ∞ + ∞ δ ( x ) φ ( x )   d x = φ ( 0 ) , ∀ φ ∈ D ( R ) \lang \delta,\ \varphi\rang=\int_{-\infty}^{+\infty}\delta(x)\varphi(x)\,\mathrm{d}x=\varphi(0),\quad \forall\varphi\in\mathscr{D}(\mathbb{R}) δ, φ=+δ(x)φ(x)dx=φ(0),φD(R);
  2. 广义函数 f f f上的微商可转移到基本空间的试验函数上:

⟨ f ′ ,   φ ⟩ = ∫ − ∞ + ∞ f ′ ( x ) φ ( x )   d x = − ∫ − ∞ + ∞ f ( x ) φ ′ ( x )   d x = − ⟨ f ,   φ ′ ⟩ , \lang f^\prime,\ \varphi\rang=\int_{-\infty}^{+\infty}f^\prime(x)\varphi(x)\,\mathrm{d}x=-\int_{-\infty}^{+\infty}f(x)\varphi^\prime(x)\,\mathrm{d}x=-\lang f,\ \varphi^\prime\rang, f, φ=+f(x)φ(x)dx=+f(x)φ(x)dx=f, φ,

  1. 广义函数 f f f k k k阶微商 f ( k ) f^{(k)} f(k):

⟨ f ( k ) ,   φ ⟩ = ( − 1 ) k ⟨ f ,   φ ( k ) ⟩ , \lang f^{(k)},\ \varphi\rang=(-1)^k\lang f,\ \varphi^{(k)}\rang, f(k), φ=(1)kf, φ(k),

  1. δ \delta δ函数的广义微商:

⟨ δ ′ ,   φ ⟩ = − ⟨ δ ,   φ ′ ⟩ = − φ ′ ( 0 ) , \lang \delta^\prime,\ \varphi\rang=-\lang \delta,\ \varphi^\prime\rang=-\varphi^\prime(0), δ, φ=δ, φ=φ(0),

  1. δ \delta δ函数的 k k k阶广义微商:

⟨ δ ( k ) ,   φ ⟩ = ( − 1 ) k ⟨ δ ,   φ ( k ) ⟩ = ( − 1 ) k φ ( k ) ( 0 ) , \lang \delta^{(k)},\ \varphi\rang=(-1)^k\lang \delta,\ \varphi^{(k)}\rang=(-1)^k\varphi^{(k)}(0), δ(k), φ=(1)kδ, φ(k)=(1)kφ(k)(0),

  1. Heaviside函数 H ( x ) = { 1 , x ⩾ 0 0 , x < 0 H(x)=\begin{cases}1,&x\geqslant0\\0,&x<0\end{cases} H(x)={1,0,x0x<0的广义微商 H ( x ) H(x) H(x) δ \delta δ函数;
  2. 平移性质: ⟨ f ( x − ξ ) ,   φ ⟩ = ⟨ f ,   φ ( x + ξ ) ⟩ \lang f(x-\xi),\ \varphi\rang=\lang f,\ \varphi(x+\xi)\rang f(xξ), φ=f, φ(x+ξ);
  3. 二元 δ \delta δ函数及其平移: ⟨ δ ,   φ ⟩ = φ ( 0 ,   0 ) , ⟨ δ ( x − ξ ,   y − η ) = φ ( ξ ,   η ) \lang\delta,\ \varphi\rang=\varphi(0,\ 0),\quad\lang\delta(x-\xi,\ y-\eta)=\varphi(\xi,\ \eta) δ, φ=φ(0, 0),δ(xξ, yη)=φ(ξ, η);
  4. δ \delta δ函数的张量积(或直积): δ ( x − ξ ,   y − η ) = δ ( x − ξ ) ⊕ δ ( y − η ) \delta(x-\xi,\ y-\eta)=\delta(x-\xi)\oplus\delta(y-\eta) δ(xξ, yη)=δ(xξ)δ(yη), 分别固定 x x x y y y即可验证等式成立.

拉普拉斯(Laplace)变换及其逆变换

傅里叶变换只能对整个数轴作用,实际操作时会有仅定义在 [ 0 ,   + ∞ ] [0,\ +\infty] [0, +]上的函数,此时引入拉普拉斯变换。

定义式

设函数 f ( t ) f(t) f(t) [ 0 ,   + ∞ ] [0,\ +\infty] [0, +]内有定义,且下述积分在 p ∈ C p\in \mathbb{C} pC在某个区域内收敛,则该积分在此区域内确定了一个以 p p p为变量的函数,此函数 F ( p ) F(p) F(p) f ( t ) f(t) f(t)的拉普拉斯变换,记为 F ( p ) = L [ f ( t ) ] F(p)=\mathscr{L}[f(t)] F(p)=L[f(t)],其逆变换记为 f ( t ) = L − 1 [ F ( p ) ] f(t)=\mathscr{L}^{-1}[F(p)] f(t)=L1[F(p)].
F ( p ) = ∫ 0 + ∞ f ( t ) e − p t d t F(p)=\int_{0}^{+\infty}f(t)\mathrm{e}^{-pt}\mathrm{d}t F(p)=0+f(t)eptdt
对于逆变换,要用到复变函数中的留数定理,即
(这里没法自定义算符,以代码&图片形式展示)

\DeclareMathOperator*{\res}{Res}
f(t)=\sum_{k}\res\limits_{p=p_k}\left[F(p)\mathrm{e}^{pt}\right]

在这里插入图片描述

其中 p k p_k pk F ( p ) F(p) F(p)的奇点(落在半平面 ℜ ( p ) ⩽ β \Re(p)\leqslant\beta (p)β内)。

常用性质

  1. ★ \bigstar 微分性质: L [ f ′ ( t ) ] = p L [ f ( t ) ] − f ( 0 ) ,   ℜ ( p ) > c \mathscr{L}[f^\prime(t)]=p\mathscr{L}[f(t)]-f(0),\ \Re(p)>c L[f(t)]=pL[f(t)]f(0), (p)>c, 更一般地,有

L [ f ( n ) ( t ) ] = p n F ( p ) − p n − 1 f ( 0 ) − p n − 2 f ′ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) , \mathscr{L}[f^{(n)}(t)]=p^nF(p)-p^{n-1}f(0)-p^{n-2}f^\prime(0)-\cdots-f^{(n-1)}(0), L[f(n)(t)]=pnF(p)pn1f(0)pn2f(0)f(n1)(0),

其中 F ( p ) = L [ f ( t ) ] F(p)=\mathscr{L}[f(t)] F(p)=L[f(t)];

  1. 积分性质: L [ ∫ 0 t f ( t )   d t ] \mathscr{L}\left[\int_{0}^tf(t)\,\mathrm{d}t\right] L[0tf(t)dt];

  2. ★ \bigstar 卷积性质: 与傅里叶变换的卷积性质类似,即 L [ f ∗ g ] = L [ f ] ⋅ L [ g ] \mathscr{L}[f\ast g]=\mathscr{L}[f]\cdot\mathscr{L}[g] L[fg]=L[f]L[g].

例题分析

利用拉普拉斯变换求积分
I = ∫ − ∞ + ∞ sin ⁡ x x d x . I=\int\nolimits_{-\infty}^{+\infty}\frac{\sin x}{x}\mathrm{d}x. I=+xsinxdx.

考虑含参变量的积分
f ( t ) = ∫ − ∞ + ∞ sin ⁡ t x x d x , f(t)=\int\nolimits_{-\infty}^{+\infty}\frac{\sin tx}{x}\mathrm{d}x, f(t)=+xsintxdx,
对变量 t t t作拉普拉斯变换,交换积分次序,并分部积分即可得到
L [ f ( t ) ] = ∫ 0 + ∞ ( ∫ − ∞ + ∞ sin ⁡ t x x d x   ) e − p t   d t = 2 ∫ 0 + ∞ ( ∫ 0 + ∞ sin ⁡ t x x d x   ) e − p t   d t = 2 ∫ 0 + ∞ 1 x ( ∫ 0 + ∞ e − p t ⋅ sin ⁡ t x   d t   )   d x = π ⋅ 1 p \begin{aligned} \mathscr{L}[f(t)] &=\int_{0}^{+\infty}\left(\int\nolimits_{-\infty}^{+\infty}\frac{\sin tx}{x}\mathrm{d}x\,\right)\mathrm{e}^{-pt}\,\mathrm{d}t\\ &=2\int_{0}^{+\infty}\left(\int\nolimits_{0}^{+\infty}\frac{\sin tx}{x}\mathrm{d}x\,\right)\mathrm{e}^{-pt}\,\mathrm{d}t\\ &=2\int_{0}^{+\infty}\frac1x\left(\int\nolimits_{0}^{+\infty}\mathrm{e}^{-pt}\cdot\sin tx\,\mathrm{d}t\,\right)\,\mathrm{d}x\\ &=\pi\cdot\frac1p \end{aligned} L[f(t)]=0+(+xsintxdx)eptdt=20+(0+xsintxdx)eptdt=20+x1(0+eptsintxdt)dx=πp1

再取拉普拉斯逆变换,可得到 I = f ( 1 ) = π . I=f(1)=\pi. I=f(1)=π.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值